AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.583 0.223 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.681
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 13.55
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.80e-05
Time: 05:15:10 Log-Likelihood: -99.947
No. Observations: 23 AIC: 207.9
Df Residuals: 19 BIC: 212.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 136.7249 61.201 2.234 0.038 8.629 264.820
C(dose)[T.1] -7.0984 92.976 -0.076 0.940 -201.700 187.503
expression -12.8110 9.457 -1.355 0.191 -32.605 6.983
expression:C(dose)[T.1] 9.2677 14.649 0.633 0.535 -21.394 39.929
Omnibus: 0.429 Durbin-Watson: 1.475
Prob(Omnibus): 0.807 Jarque-Bera (JB): 0.549
Skew: -0.097 Prob(JB): 0.760
Kurtosis: 2.268 Cond. No. 177.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.675
Model: OLS Adj. R-squared: 0.642
Method: Least Squares F-statistic: 20.75
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.32e-05
Time: 05:15:10 Log-Likelihood: -100.19
No. Observations: 23 AIC: 206.4
Df Residuals: 20 BIC: 209.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.8472 46.187 2.422 0.025 15.502 208.193
C(dose)[T.1] 51.4639 8.573 6.003 0.000 33.582 69.346
expression -8.9487 7.113 -1.258 0.223 -23.787 5.889
Omnibus: 0.090 Durbin-Watson: 1.667
Prob(Omnibus): 0.956 Jarque-Bera (JB): 0.307
Skew: 0.067 Prob(JB): 0.858
Kurtosis: 2.450 Cond. No. 71.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:15:10 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.089
Model: OLS Adj. R-squared: 0.045
Method: Least Squares F-statistic: 2.045
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.167
Time: 05:15:10 Log-Likelihood: -112.04
No. Observations: 23 AIC: 228.1
Df Residuals: 21 BIC: 230.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 183.4951 72.889 2.517 0.020 31.915 335.075
expression -16.3663 11.443 -1.430 0.167 -40.164 7.432
Omnibus: 1.259 Durbin-Watson: 2.277
Prob(Omnibus): 0.533 Jarque-Bera (JB): 1.160
Skew: 0.460 Prob(JB): 0.560
Kurtosis: 2.396 Cond. No. 69.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.470 0.249 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.510
Model: OLS Adj. R-squared: 0.376
Method: Least Squares F-statistic: 3.813
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0427
Time: 05:15:10 Log-Likelihood: -69.953
No. Observations: 15 AIC: 147.9
Df Residuals: 11 BIC: 150.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -119.1262 215.634 -0.552 0.592 -593.733 355.480
C(dose)[T.1] 79.3982 293.408 0.271 0.792 -566.388 725.184
expression 27.0453 31.218 0.866 0.405 -41.665 95.755
expression:C(dose)[T.1] -5.8442 41.236 -0.142 0.890 -96.604 84.916
Omnibus: 1.844 Durbin-Watson: 0.908
Prob(Omnibus): 0.398 Jarque-Bera (JB): 1.327
Skew: -0.531 Prob(JB): 0.515
Kurtosis: 2.002 Cond. No. 381.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.509
Model: OLS Adj. R-squared: 0.427
Method: Least Squares F-statistic: 6.218
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0140
Time: 05:15:10 Log-Likelihood: -69.966
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -96.0224 135.261 -0.710 0.491 -390.731 198.686
C(dose)[T.1] 37.8963 17.538 2.161 0.052 -0.316 76.109
expression 23.6959 19.546 1.212 0.249 -18.891 66.283
Omnibus: 1.888 Durbin-Watson: 0.876
Prob(Omnibus): 0.389 Jarque-Bera (JB): 1.331
Skew: -0.523 Prob(JB): 0.514
Kurtosis: 1.983 Cond. No. 134.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:15:10 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.318
Model: OLS Adj. R-squared: 0.265
Method: Least Squares F-statistic: 6.057
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0286
Time: 05:15:10 Log-Likelihood: -72.431
No. Observations: 15 AIC: 148.9
Df Residuals: 13 BIC: 150.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -236.3536 134.353 -1.759 0.102 -526.607 53.899
expression 46.1424 18.748 2.461 0.029 5.639 86.645
Omnibus: 1.952 Durbin-Watson: 1.547
Prob(Omnibus): 0.377 Jarque-Bera (JB): 1.242
Skew: 0.442 Prob(JB): 0.537
Kurtosis: 1.903 Cond. No. 117.