AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.350 0.561 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.605
Method: Least Squares F-statistic: 12.23
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000110
Time: 22:57:32 Log-Likelihood: -100.74
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -128.0806 250.770 -0.511 0.615 -652.947 396.786
C(dose)[T.1] 210.0055 338.370 0.621 0.542 -498.210 918.221
expression 18.4267 25.342 0.727 0.476 -34.614 71.467
expression:C(dose)[T.1] -15.7467 34.734 -0.453 0.655 -88.446 56.953
Omnibus: 0.107 Durbin-Watson: 1.798
Prob(Omnibus): 0.948 Jarque-Bera (JB): 0.282
Skew: 0.127 Prob(JB): 0.869
Kurtosis: 2.521 Cond. No. 988.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 18.99
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.38e-05
Time: 22:57:32 Log-Likelihood: -100.86
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -45.1612 168.115 -0.269 0.791 -395.842 305.520
C(dose)[T.1] 56.6806 10.370 5.466 0.000 35.049 78.313
expression 10.0448 16.983 0.591 0.561 -25.381 45.471
Omnibus: 0.181 Durbin-Watson: 1.813
Prob(Omnibus): 0.913 Jarque-Bera (JB): 0.382
Skew: 0.119 Prob(JB): 0.826
Kurtosis: 2.415 Cond. No. 382.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:57:32 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.140
Model: OLS Adj. R-squared: 0.099
Method: Least Squares F-statistic: 3.416
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0787
Time: 22:57:32 Log-Likelihood: -111.37
No. Observations: 23 AIC: 226.7
Df Residuals: 21 BIC: 229.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 474.4423 213.677 2.220 0.038 30.078 918.807
expression -40.5535 21.942 -1.848 0.079 -86.185 5.078
Omnibus: 2.194 Durbin-Watson: 2.635
Prob(Omnibus): 0.334 Jarque-Bera (JB): 1.256
Skew: 0.242 Prob(JB): 0.534
Kurtosis: 1.963 Cond. No. 314.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.712 0.415 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.497
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 3.623
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0488
Time: 22:57:33 Log-Likelihood: -70.146
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -24.1156 658.679 -0.037 0.971 -1473.858 1425.626
C(dose)[T.1] -534.2538 934.949 -0.571 0.579 -2592.062 1523.555
expression 9.7487 70.133 0.139 0.892 -144.614 164.111
expression:C(dose)[T.1] 60.7181 98.569 0.616 0.550 -156.230 277.666
Omnibus: 2.442 Durbin-Watson: 0.687
Prob(Omnibus): 0.295 Jarque-Bera (JB): 1.700
Skew: -0.649 Prob(JB): 0.427
Kurtosis: 1.982 Cond. No. 1.53e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.480
Model: OLS Adj. R-squared: 0.393
Method: Least Squares F-statistic: 5.530
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0199
Time: 22:57:33 Log-Likelihood: -70.401
No. Observations: 15 AIC: 146.8
Df Residuals: 12 BIC: 148.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -312.7671 450.777 -0.694 0.501 -1294.925 669.391
C(dose)[T.1] 41.5645 17.768 2.339 0.037 2.852 80.277
expression 40.4877 47.989 0.844 0.415 -64.072 145.047
Omnibus: 2.723 Durbin-Watson: 0.704
Prob(Omnibus): 0.256 Jarque-Bera (JB): 2.049
Skew: -0.798 Prob(JB): 0.359
Kurtosis: 2.144 Cond. No. 568.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:57:33 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.242
Model: OLS Adj. R-squared: 0.184
Method: Least Squares F-statistic: 4.158
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0623
Time: 22:57:33 Log-Likelihood: -73.219
No. Observations: 15 AIC: 150.4
Df Residuals: 13 BIC: 151.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -833.0554 454.557 -1.833 0.090 -1815.067 148.956
expression 97.6430 47.885 2.039 0.062 -5.806 201.092
Omnibus: 0.242 Durbin-Watson: 1.548
Prob(Omnibus): 0.886 Jarque-Bera (JB): 0.421
Skew: -0.081 Prob(JB): 0.810
Kurtosis: 2.195 Cond. No. 493.