AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.013 | 0.910 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.73 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000141 |
Time: | 05:06:36 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 59.9082 | 39.729 | 1.508 | 0.148 | -23.245 143.061 |
C(dose)[T.1] | 47.7346 | 56.452 | 0.846 | 0.408 | -70.420 165.889 |
expression | -1.1507 | 7.921 | -0.145 | 0.886 | -17.730 15.429 |
expression:C(dose)[T.1] | 1.1280 | 12.140 | 0.093 | 0.927 | -24.281 26.537 |
Omnibus: | 0.258 | Durbin-Watson: | 1.924 |
Prob(Omnibus): | 0.879 | Jarque-Bera (JB): | 0.446 |
Skew: | 0.098 | Prob(JB): | 0.800 |
Kurtosis: | 2.347 | Cond. No. | 77.7 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.82e-05 |
Time: | 05:06:36 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.5292 | 29.616 | 1.943 | 0.066 | -4.248 119.306 |
C(dose)[T.1] | 52.9003 | 9.560 | 5.533 | 0.000 | 32.958 72.843 |
expression | -0.6704 | 5.852 | -0.115 | 0.910 | -12.878 11.537 |
Omnibus: | 0.203 | Durbin-Watson: | 1.904 |
Prob(Omnibus): | 0.904 | Jarque-Bera (JB): | 0.407 |
Skew: | 0.055 | Prob(JB): | 0.816 |
Kurtosis: | 2.357 | Cond. No. | 33.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:06:36 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.112 |
Model: | OLS | Adj. R-squared: | 0.070 |
Method: | Least Squares | F-statistic: | 2.659 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.118 |
Time: | 05:06:36 | Log-Likelihood: | -111.73 |
No. Observations: | 23 | AIC: | 227.5 |
Df Residuals: | 21 | BIC: | 229.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 142.7815 | 39.267 | 3.636 | 0.002 | 61.121 224.442 |
expression | -13.5858 | 8.331 | -1.631 | 0.118 | -30.912 3.740 |
Omnibus: | 6.074 | Durbin-Watson: | 2.402 |
Prob(Omnibus): | 0.048 | Jarque-Bera (JB): | 1.924 |
Skew: | 0.238 | Prob(JB): | 0.382 |
Kurtosis: | 1.665 | Cond. No. | 28.4 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.658 | 0.433 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.512 |
Model: | OLS | Adj. R-squared: | 0.379 |
Method: | Least Squares | F-statistic: | 3.852 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0416 |
Time: | 05:06:36 | Log-Likelihood: | -69.915 |
No. Observations: | 15 | AIC: | 147.8 |
Df Residuals: | 11 | BIC: | 150.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -161.0318 | 202.626 | -0.795 | 0.444 | -607.010 284.946 |
C(dose)[T.1] | 243.1526 | 220.712 | 1.102 | 0.294 | -242.632 728.937 |
expression | 41.4977 | 36.748 | 1.129 | 0.283 | -39.384 122.380 |
expression:C(dose)[T.1] | -35.3568 | 39.867 | -0.887 | 0.394 | -123.104 52.391 |
Omnibus: | 2.045 | Durbin-Watson: | 1.092 |
Prob(Omnibus): | 0.360 | Jarque-Bera (JB): | 1.576 |
Skew: | -0.722 | Prob(JB): | 0.455 |
Kurtosis: | 2.340 | Cond. No. | 256. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.477 |
Model: | OLS | Adj. R-squared: | 0.390 |
Method: | Least Squares | F-statistic: | 5.482 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0204 |
Time: | 05:06:36 | Log-Likelihood: | -70.433 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 12 | BIC: | 149.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 4.3515 | 78.551 | 0.055 | 0.957 | -166.795 175.498 |
C(dose)[T.1] | 47.8979 | 15.408 | 3.109 | 0.009 | 14.326 81.470 |
expression | 11.4574 | 14.122 | 0.811 | 0.433 | -19.313 42.227 |
Omnibus: | 2.155 | Durbin-Watson: | 0.718 |
Prob(Omnibus): | 0.341 | Jarque-Bera (JB): | 1.659 |
Skew: | -0.701 | Prob(JB): | 0.436 |
Kurtosis: | 2.172 | Cond. No. | 59.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:06:36 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.057 |
Model: | OLS | Adj. R-squared: | -0.016 |
Method: | Least Squares | F-statistic: | 0.7804 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.393 |
Time: | 05:06:36 | Log-Likelihood: | -74.863 |
No. Observations: | 15 | AIC: | 153.7 |
Df Residuals: | 13 | BIC: | 155.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 4.5161 | 101.400 | 0.045 | 0.965 | -214.546 223.578 |
expression | 16.0175 | 18.132 | 0.883 | 0.393 | -23.154 55.189 |
Omnibus: | 1.459 | Durbin-Watson: | 1.552 |
Prob(Omnibus): | 0.482 | Jarque-Bera (JB): | 0.932 |
Skew: | 0.268 | Prob(JB): | 0.628 |
Kurtosis: | 1.903 | Cond. No. | 59.3 |