AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.171 0.292 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 12.87
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.00e-05
Time: 04:46:13 Log-Likelihood: -100.35
No. Observations: 23 AIC: 208.7
Df Residuals: 19 BIC: 213.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 135.2425 78.186 1.730 0.100 -28.402 298.887
C(dose)[T.1] 14.6920 136.973 0.107 0.916 -271.996 301.380
expression -12.9124 12.421 -1.040 0.312 -38.911 13.086
expression:C(dose)[T.1] 6.6870 20.646 0.324 0.750 -36.525 49.899
Omnibus: 1.509 Durbin-Watson: 1.933
Prob(Omnibus): 0.470 Jarque-Bera (JB): 0.937
Skew: -0.031 Prob(JB): 0.626
Kurtosis: 2.013 Cond. No. 259.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 20.16
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.60e-05
Time: 04:46:13 Log-Likelihood: -100.41
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 120.0520 61.142 1.964 0.064 -7.487 247.591
C(dose)[T.1] 58.9332 9.970 5.911 0.000 38.135 79.731
expression -10.4919 9.697 -1.082 0.292 -30.720 9.736
Omnibus: 1.207 Durbin-Watson: 1.941
Prob(Omnibus): 0.547 Jarque-Bera (JB): 0.845
Skew: 0.003 Prob(JB): 0.656
Kurtosis: 2.061 Cond. No. 96.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:46:13 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.089
Model: OLS Adj. R-squared: 0.046
Method: Least Squares F-statistic: 2.059
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.166
Time: 04:46:13 Log-Likelihood: -112.03
No. Observations: 23 AIC: 228.1
Df Residuals: 21 BIC: 230.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -45.9512 87.842 -0.523 0.606 -228.628 136.726
expression 19.2425 13.409 1.435 0.166 -8.643 47.128
Omnibus: 1.346 Durbin-Watson: 2.179
Prob(Omnibus): 0.510 Jarque-Bera (JB): 0.933
Skew: 0.146 Prob(JB): 0.627
Kurtosis: 2.058 Cond. No. 85.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.152 0.304 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.517
Model: OLS Adj. R-squared: 0.385
Method: Least Squares F-statistic: 3.919
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0398
Time: 04:46:13 Log-Likelihood: -69.848
No. Observations: 15 AIC: 147.7
Df Residuals: 11 BIC: 150.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 229.7122 134.395 1.709 0.115 -66.088 525.513
C(dose)[T.1] -209.1272 374.933 -0.558 0.588 -1034.349 616.095
expression -21.1173 17.427 -1.212 0.251 -59.474 17.239
expression:C(dose)[T.1] 34.4803 51.705 0.667 0.519 -79.321 148.282
Omnibus: 2.064 Durbin-Watson: 1.127
Prob(Omnibus): 0.356 Jarque-Bera (JB): 1.297
Skew: -0.708 Prob(JB): 0.523
Kurtosis: 2.731 Cond. No. 427.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.497
Model: OLS Adj. R-squared: 0.413
Method: Least Squares F-statistic: 5.930
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0162
Time: 04:46:13 Log-Likelihood: -70.145
No. Observations: 15 AIC: 146.3
Df Residuals: 12 BIC: 148.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 199.6107 123.624 1.615 0.132 -69.743 468.964
C(dose)[T.1] 40.6336 17.019 2.387 0.034 3.551 77.716
expression -17.2004 16.023 -1.073 0.304 -52.112 17.711
Omnibus: 3.062 Durbin-Watson: 0.937
Prob(Omnibus): 0.216 Jarque-Bera (JB): 1.891
Skew: -0.866 Prob(JB): 0.389
Kurtosis: 2.846 Cond. No. 125.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:46:13 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.258
Model: OLS Adj. R-squared: 0.201
Method: Least Squares F-statistic: 4.524
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0531
Time: 04:46:13 Log-Likelihood: -73.060
No. Observations: 15 AIC: 150.1
Df Residuals: 13 BIC: 151.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 354.3085 122.849 2.884 0.013 88.908 619.709
expression -35.1301 16.516 -2.127 0.053 -70.811 0.550
Omnibus: 4.186 Durbin-Watson: 1.867
Prob(Omnibus): 0.123 Jarque-Bera (JB): 1.343
Skew: 0.163 Prob(JB): 0.511
Kurtosis: 1.571 Cond. No. 106.