AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.933 0.346 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.671
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 12.94
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.77e-05
Time: 05:14:06 Log-Likelihood: -100.31
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 120.8509 60.053 2.012 0.059 -4.841 246.543
C(dose)[T.1] 0.4667 88.884 0.005 0.996 -185.571 186.504
expression -12.4534 11.165 -1.115 0.279 -35.823 10.916
expression:C(dose)[T.1] 9.9983 16.120 0.620 0.542 -23.742 43.738
Omnibus: 0.253 Durbin-Watson: 2.081
Prob(Omnibus): 0.881 Jarque-Bera (JB): 0.407
Skew: -0.195 Prob(JB): 0.816
Kurtosis: 2.479 Cond. No. 149.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.665
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 19.82
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.80e-05
Time: 05:14:06 Log-Likelihood: -100.54
No. Observations: 23 AIC: 207.1
Df Residuals: 20 BIC: 210.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.1825 42.841 2.222 0.038 5.817 184.548
C(dose)[T.1] 55.3156 8.814 6.276 0.000 36.931 73.701
expression -7.6568 7.929 -0.966 0.346 -24.196 8.882
Omnibus: 0.481 Durbin-Watson: 1.958
Prob(Omnibus): 0.786 Jarque-Bera (JB): 0.502
Skew: -0.296 Prob(JB): 0.778
Kurtosis: 2.582 Cond. No. 57.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:14:06 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.043
Method: Least Squares F-statistic: 0.09092
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.766
Time: 05:14:06 Log-Likelihood: -113.06
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.3092 71.365 0.817 0.423 -90.102 206.721
expression 3.9102 12.968 0.302 0.766 -23.059 30.879
Omnibus: 2.580 Durbin-Watson: 2.493
Prob(Omnibus): 0.275 Jarque-Bera (JB): 1.427
Skew: 0.299 Prob(JB): 0.490
Kurtosis: 1.936 Cond. No. 56.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.926 0.355 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.488
Model: OLS Adj. R-squared: 0.349
Method: Least Squares F-statistic: 3.499
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0532
Time: 05:14:06 Log-Likelihood: -70.275
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 1.9353 84.013 0.023 0.982 -182.975 186.846
C(dose)[T.1] 52.6174 154.536 0.340 0.740 -287.513 392.748
expression 12.0696 15.335 0.787 0.448 -21.683 45.822
expression:C(dose)[T.1] -1.0613 27.579 -0.038 0.970 -61.762 59.640
Omnibus: 1.653 Durbin-Watson: 0.720
Prob(Omnibus): 0.438 Jarque-Bera (JB): 1.230
Skew: -0.506 Prob(JB): 0.541
Kurtosis: 2.028 Cond. No. 138.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.488
Model: OLS Adj. R-squared: 0.403
Method: Least Squares F-statistic: 5.724
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0180
Time: 05:14:06 Log-Likelihood: -70.276
No. Observations: 15 AIC: 146.6
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 3.7159 67.142 0.055 0.957 -142.574 150.006
C(dose)[T.1] 46.7026 15.386 3.035 0.010 13.180 80.225
expression 11.7415 12.204 0.962 0.355 -14.849 38.332
Omnibus: 1.693 Durbin-Watson: 0.721
Prob(Omnibus): 0.429 Jarque-Bera (JB): 1.232
Skew: -0.495 Prob(JB): 0.540
Kurtosis: 2.005 Cond. No. 51.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:14:06 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.095
Model: OLS Adj. R-squared: 0.026
Method: Least Squares F-statistic: 1.369
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.263
Time: 05:14:06 Log-Likelihood: -74.549
No. Observations: 15 AIC: 153.1
Df Residuals: 13 BIC: 154.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -5.9498 85.674 -0.069 0.946 -191.037 179.137
expression 17.9827 15.367 1.170 0.263 -15.216 51.181
Omnibus: 2.096 Durbin-Watson: 1.389
Prob(Omnibus): 0.351 Jarque-Bera (JB): 1.136
Skew: 0.323 Prob(JB): 0.567
Kurtosis: 1.817 Cond. No. 51.0