AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.336 | 0.568 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.605 |
Method: | Least Squares | F-statistic: | 12.21 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000111 |
Time: | 04:39:21 | Log-Likelihood: | -100.75 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 55.4597 | 46.876 | 1.183 | 0.251 | -42.653 153.572 |
C(dose)[T.1] | 84.8611 | 65.386 | 1.298 | 0.210 | -51.993 221.715 |
expression | -0.2664 | 9.895 | -0.027 | 0.979 | -20.977 20.444 |
expression:C(dose)[T.1] | -5.9112 | 13.049 | -0.453 | 0.656 | -33.223 21.400 |
Omnibus: | 0.019 | Durbin-Watson: | 1.713 |
Prob(Omnibus): | 0.990 | Jarque-Bera (JB): | 0.158 |
Skew: | -0.058 | Prob(JB): | 0.924 |
Kurtosis: | 2.610 | Cond. No. | 104. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 18.97 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.40e-05 |
Time: | 04:39:21 | Log-Likelihood: | -100.87 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 71.4238 | 30.290 | 2.358 | 0.029 | 8.239 134.608 |
C(dose)[T.1] | 55.5691 | 9.511 | 5.843 | 0.000 | 35.730 75.408 |
expression | -3.6655 | 6.321 | -0.580 | 0.568 | -16.851 9.520 |
Omnibus: | 0.091 | Durbin-Watson: | 1.758 |
Prob(Omnibus): | 0.955 | Jarque-Bera (JB): | 0.294 |
Skew: | -0.094 | Prob(JB): | 0.863 |
Kurtosis: | 2.479 | Cond. No. | 36.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:39:21 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.066 |
Model: | OLS | Adj. R-squared: | 0.021 |
Method: | Least Squares | F-statistic: | 1.478 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.238 |
Time: | 04:39:21 | Log-Likelihood: | -112.32 |
No. Observations: | 23 | AIC: | 228.6 |
Df Residuals: | 21 | BIC: | 230.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 23.4488 | 46.814 | 0.501 | 0.622 | -73.906 120.804 |
expression | 11.2813 | 9.281 | 1.216 | 0.238 | -8.020 30.582 |
Omnibus: | 4.366 | Durbin-Watson: | 2.607 |
Prob(Omnibus): | 0.113 | Jarque-Bera (JB): | 2.004 |
Skew: | 0.408 | Prob(JB): | 0.367 |
Kurtosis: | 1.806 | Cond. No. | 35.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.108 | 0.103 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.562 |
Model: | OLS | Adj. R-squared: | 0.443 |
Method: | Least Squares | F-statistic: | 4.708 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0238 |
Time: | 04:39:21 | Log-Likelihood: | -69.105 |
No. Observations: | 15 | AIC: | 146.2 |
Df Residuals: | 11 | BIC: | 149.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -0.1962 | 51.250 | -0.004 | 0.997 | -112.996 112.603 |
C(dose)[T.1] | 53.1512 | 81.646 | 0.651 | 0.528 | -126.551 232.853 |
expression | 15.3365 | 11.367 | 1.349 | 0.204 | -9.681 40.354 |
expression:C(dose)[T.1] | 0.3568 | 19.197 | 0.019 | 0.986 | -41.896 42.609 |
Omnibus: | 4.808 | Durbin-Watson: | 1.263 |
Prob(Omnibus): | 0.090 | Jarque-Bera (JB): | 2.355 |
Skew: | -0.917 | Prob(JB): | 0.308 |
Kurtosis: | 3.636 | Cond. No. | 62.9 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.562 |
Model: | OLS | Adj. R-squared: | 0.489 |
Method: | Least Squares | F-statistic: | 7.704 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00704 |
Time: | 04:39:21 | Log-Likelihood: | -69.106 |
No. Observations: | 15 | AIC: | 144.2 |
Df Residuals: | 12 | BIC: | 146.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -0.7478 | 40.005 | -0.019 | 0.985 | -87.911 86.415 |
C(dose)[T.1] | 54.6429 | 14.364 | 3.804 | 0.003 | 23.347 85.939 |
expression | 15.4616 | 8.770 | 1.763 | 0.103 | -3.647 34.570 |
Omnibus: | 4.788 | Durbin-Watson: | 1.269 |
Prob(Omnibus): | 0.091 | Jarque-Bera (JB): | 2.349 |
Skew: | -0.918 | Prob(JB): | 0.309 |
Kurtosis: | 3.625 | Cond. No. | 26.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:39:21 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.034 |
Model: | OLS | Adj. R-squared: | -0.040 |
Method: | Least Squares | F-statistic: | 0.4596 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.510 |
Time: | 04:39:21 | Log-Likelihood: | -75.039 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 58.6884 | 52.553 | 1.117 | 0.284 | -54.846 172.223 |
expression | 8.2857 | 12.222 | 0.678 | 0.510 | -18.118 34.690 |
Omnibus: | 1.503 | Durbin-Watson: | 1.764 |
Prob(Omnibus): | 0.472 | Jarque-Bera (JB): | 0.887 |
Skew: | 0.181 | Prob(JB): | 0.642 |
Kurtosis: | 1.865 | Cond. No. | 23.8 |