AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.987 0.332 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.693
Model: OLS Adj. R-squared: 0.644
Method: Least Squares F-statistic: 14.28
Date: Tue, 03 Dec 2024 Prob (F-statistic): 4.15e-05
Time: 11:41:20 Log-Likelihood: -99.533
No. Observations: 23 AIC: 207.1
Df Residuals: 19 BIC: 211.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 60.1689 47.773 1.259 0.223 -39.821 160.159
C(dose)[T.1] -35.5073 69.831 -0.508 0.617 -181.666 110.651
expression -1.1545 9.184 -0.126 0.901 -20.377 18.068
expression:C(dose)[T.1] 17.6951 13.645 1.297 0.210 -10.864 46.254
Omnibus: 1.273 Durbin-Watson: 2.150
Prob(Omnibus): 0.529 Jarque-Bera (JB): 1.173
Skew: 0.454 Prob(JB): 0.556
Kurtosis: 2.367 Cond. No. 112.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.666
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 19.90
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.75e-05
Time: 11:41:20 Log-Likelihood: -100.51
No. Observations: 23 AIC: 207.0
Df Residuals: 20 BIC: 210.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 18.7815 36.150 0.520 0.609 -56.626 94.189
C(dose)[T.1] 54.3808 8.625 6.305 0.000 36.389 72.373
expression 6.8616 6.907 0.993 0.332 -7.546 21.270
Omnibus: 1.580 Durbin-Watson: 1.970
Prob(Omnibus): 0.454 Jarque-Bera (JB): 1.134
Skew: 0.286 Prob(JB): 0.567
Kurtosis: 2.075 Cond. No. 45.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:41:20 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.01813
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.894
Time: 11:41:20 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.7905 59.304 1.211 0.240 -51.540 195.121
expression 1.5573 11.564 0.135 0.894 -22.491 25.606
Omnibus: 3.269 Durbin-Watson: 2.520
Prob(Omnibus): 0.195 Jarque-Bera (JB): 1.547
Skew: 0.279 Prob(JB): 0.461
Kurtosis: 1.859 Cond. No. 43.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.115 0.312 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.689
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 8.124
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00393
Time: 11:41:20 Log-Likelihood: -66.540
No. Observations: 15 AIC: 141.1
Df Residuals: 11 BIC: 143.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 131.3978 77.358 1.699 0.117 -38.867 301.662
C(dose)[T.1] -224.8740 108.217 -2.078 0.062 -463.058 13.310
expression -11.1066 13.340 -0.833 0.423 -40.467 18.254
expression:C(dose)[T.1] 51.3448 19.631 2.615 0.024 8.137 94.553
Omnibus: 4.469 Durbin-Watson: 1.596
Prob(Omnibus): 0.107 Jarque-Bera (JB): 2.840
Skew: -1.066 Prob(JB): 0.242
Kurtosis: 2.959 Cond. No. 131.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.496
Model: OLS Adj. R-squared: 0.412
Method: Least Squares F-statistic: 5.896
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0165
Time: 11:41:20 Log-Likelihood: -70.167
No. Observations: 15 AIC: 146.3
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -5.1494 69.604 -0.074 0.942 -156.803 146.505
C(dose)[T.1] 55.9773 16.368 3.420 0.005 20.315 91.640
expression 12.6013 11.933 1.056 0.312 -13.399 38.602
Omnibus: 1.664 Durbin-Watson: 0.909
Prob(Omnibus): 0.435 Jarque-Bera (JB): 1.054
Skew: -0.632 Prob(JB): 0.590
Kurtosis: 2.699 Cond. No. 53.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:41:20 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.073
Method: Least Squares F-statistic: 0.05293
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.822
Time: 11:41:20 Log-Likelihood: -75.270
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 112.3256 81.732 1.374 0.193 -64.245 288.897
expression -3.4095 14.819 -0.230 0.822 -35.425 28.606
Omnibus: 0.762 Durbin-Watson: 1.581
Prob(Omnibus): 0.683 Jarque-Bera (JB): 0.645
Skew: 0.098 Prob(JB): 0.724
Kurtosis: 2.004 Cond. No. 45.9