AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.410 0.529 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.606
Method: Least Squares F-statistic: 12.27
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000107
Time: 04:51:42 Log-Likelihood: -100.71
No. Observations: 23 AIC: 209.4
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 40.2418 44.735 0.900 0.380 -53.389 133.872
C(dose)[T.1] 17.7786 83.870 0.212 0.834 -157.763 193.321
expression 3.3276 10.558 0.315 0.756 -18.770 25.425
expression:C(dose)[T.1] 9.2173 20.779 0.444 0.662 -34.274 52.709
Omnibus: 0.745 Durbin-Watson: 1.882
Prob(Omnibus): 0.689 Jarque-Bera (JB): 0.682
Skew: -0.001 Prob(JB): 0.711
Kurtosis: 2.156 Cond. No. 96.6

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.08
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.31e-05
Time: 04:51:42 Log-Likelihood: -100.83
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 30.2544 37.871 0.799 0.434 -48.744 109.253
C(dose)[T.1] 54.7603 8.961 6.111 0.000 36.068 73.453
expression 5.7072 8.909 0.641 0.529 -12.877 24.291
Omnibus: 1.015 Durbin-Watson: 1.778
Prob(Omnibus): 0.602 Jarque-Bera (JB): 0.784
Skew: -0.038 Prob(JB): 0.676
Kurtosis: 2.099 Cond. No. 38.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:51:42 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.014
Model: OLS Adj. R-squared: -0.033
Method: Least Squares F-statistic: 0.2983
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.591
Time: 04:51:43 Log-Likelihood: -112.94
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.4842 58.600 1.902 0.071 -10.381 233.349
expression -7.7900 14.262 -0.546 0.591 -37.450 21.870
Omnibus: 3.858 Durbin-Watson: 2.469
Prob(Omnibus): 0.145 Jarque-Bera (JB): 1.713
Skew: 0.312 Prob(JB): 0.425
Kurtosis: 1.817 Cond. No. 35.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.240 0.287 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.536
Model: OLS Adj. R-squared: 0.410
Method: Least Squares F-statistic: 4.238
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0321
Time: 04:51:43 Log-Likelihood: -69.539
No. Observations: 15 AIC: 147.1
Df Residuals: 11 BIC: 149.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 74.4401 78.930 0.943 0.366 -99.285 248.165
C(dose)[T.1] 148.1223 108.512 1.365 0.200 -90.710 386.955
expression -1.7576 19.592 -0.090 0.930 -44.879 41.364
expression:C(dose)[T.1] -24.7870 26.931 -0.920 0.377 -84.063 34.489
Omnibus: 1.238 Durbin-Watson: 1.055
Prob(Omnibus): 0.539 Jarque-Bera (JB): 1.037
Skew: -0.544 Prob(JB): 0.595
Kurtosis: 2.309 Cond. No. 83.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.500
Model: OLS Adj. R-squared: 0.417
Method: Least Squares F-statistic: 6.010
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0155
Time: 04:51:43 Log-Likelihood: -70.095
No. Observations: 15 AIC: 146.2
Df Residuals: 12 BIC: 148.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 126.7706 54.397 2.330 0.038 8.250 245.291
C(dose)[T.1] 49.2201 14.984 3.285 0.007 16.572 81.868
expression -14.8752 13.357 -1.114 0.287 -43.977 14.227
Omnibus: 0.681 Durbin-Watson: 0.905
Prob(Omnibus): 0.712 Jarque-Bera (JB): 0.660
Skew: -0.239 Prob(JB): 0.719
Kurtosis: 2.090 Cond. No. 31.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:51:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.051
Model: OLS Adj. R-squared: -0.022
Method: Least Squares F-statistic: 0.7016
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.417
Time: 04:51:43 Log-Likelihood: -74.906
No. Observations: 15 AIC: 153.8
Df Residuals: 13 BIC: 155.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 152.7734 71.256 2.144 0.052 -1.166 306.713
expression -14.8130 17.685 -0.838 0.417 -53.019 23.393
Omnibus: 1.792 Durbin-Watson: 1.502
Prob(Omnibus): 0.408 Jarque-Bera (JB): 0.935
Skew: 0.145 Prob(JB): 0.626
Kurtosis: 1.812 Cond. No. 30.8