AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.321 | 0.051 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.712 |
Model: | OLS | Adj. R-squared: | 0.667 |
Method: | Least Squares | F-statistic: | 15.68 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.25e-05 |
Time: | 05:26:01 | Log-Likelihood: | -98.776 |
No. Observations: | 23 | AIC: | 205.6 |
Df Residuals: | 19 | BIC: | 210.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -10.8395 | 42.877 | -0.253 | 0.803 | -100.582 78.903 |
C(dose)[T.1] | 38.1892 | 73.291 | 0.521 | 0.608 | -115.210 191.589 |
expression | 10.9702 | 7.168 | 1.530 | 0.142 | -4.033 25.974 |
expression:C(dose)[T.1] | 3.1499 | 12.643 | 0.249 | 0.806 | -23.312 29.612 |
Omnibus: | 1.454 | Durbin-Watson: | 1.856 |
Prob(Omnibus): | 0.483 | Jarque-Bera (JB): | 1.173 |
Skew: | -0.354 | Prob(JB): | 0.556 |
Kurtosis: | 2.151 | Cond. No. | 130. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.711 |
Model: | OLS | Adj. R-squared: | 0.683 |
Method: | Least Squares | F-statistic: | 24.65 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.01e-06 |
Time: | 05:26:01 | Log-Likelihood: | -98.813 |
No. Observations: | 23 | AIC: | 203.6 |
Df Residuals: | 20 | BIC: | 207.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -16.8438 | 34.621 | -0.487 | 0.632 | -89.062 55.375 |
C(dose)[T.1] | 56.3323 | 8.082 | 6.970 | 0.000 | 39.473 73.191 |
expression | 11.9828 | 5.765 | 2.079 | 0.051 | -0.042 24.008 |
Omnibus: | 1.761 | Durbin-Watson: | 1.830 |
Prob(Omnibus): | 0.415 | Jarque-Bera (JB): | 1.289 |
Skew: | -0.358 | Prob(JB): | 0.525 |
Kurtosis: | 2.088 | Cond. No. | 52.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:26:01 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.010 |
Model: | OLS | Adj. R-squared: | -0.037 |
Method: | Least Squares | F-statistic: | 0.2211 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.643 |
Time: | 05:26:01 | Log-Likelihood: | -112.98 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.7149 | 59.986 | 0.862 | 0.398 | -73.034 176.463 |
expression | 4.8197 | 10.251 | 0.470 | 0.643 | -16.497 26.137 |
Omnibus: | 3.328 | Durbin-Watson: | 2.576 |
Prob(Omnibus): | 0.189 | Jarque-Bera (JB): | 1.568 |
Skew: | 0.285 | Prob(JB): | 0.457 |
Kurtosis: | 1.855 | Cond. No. | 50.3 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.477 | 0.503 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.489 |
Model: | OLS | Adj. R-squared: | 0.350 |
Method: | Least Squares | F-statistic: | 3.511 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0528 |
Time: | 05:26:01 | Log-Likelihood: | -70.262 |
No. Observations: | 15 | AIC: | 148.5 |
Df Residuals: | 11 | BIC: | 151.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 55.6258 | 149.414 | 0.372 | 0.717 | -273.233 384.485 |
C(dose)[T.1] | -94.7417 | 224.819 | -0.421 | 0.682 | -589.564 400.081 |
expression | 2.7187 | 34.313 | 0.079 | 0.938 | -72.804 78.242 |
expression:C(dose)[T.1] | 33.4486 | 51.893 | 0.645 | 0.532 | -80.768 147.665 |
Omnibus: | 5.512 | Durbin-Watson: | 1.009 |
Prob(Omnibus): | 0.064 | Jarque-Bera (JB): | 2.886 |
Skew: | -1.024 | Prob(JB): | 0.236 |
Kurtosis: | 3.649 | Cond. No. | 168. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.381 |
Method: | Least Squares | F-statistic: | 5.318 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0222 |
Time: | 05:26:01 | Log-Likelihood: | -70.541 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -7.8642 | 109.578 | -0.072 | 0.944 | -246.615 230.886 |
C(dose)[T.1] | 49.8076 | 15.461 | 3.221 | 0.007 | 16.121 83.494 |
expression | 17.3431 | 25.107 | 0.691 | 0.503 | -37.359 72.046 |
Omnibus: | 4.465 | Durbin-Watson: | 0.931 |
Prob(Omnibus): | 0.107 | Jarque-Bera (JB): | 2.553 |
Skew: | -1.006 | Prob(JB): | 0.279 |
Kurtosis: | 3.190 | Cond. No. | 65.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:26:01 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.065 |
Method: | Least Squares | F-statistic: | 0.1495 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.705 |
Time: | 05:26:01 | Log-Likelihood: | -75.214 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 38.7058 | 142.512 | 0.272 | 0.790 | -269.172 346.584 |
expression | 12.7149 | 32.886 | 0.387 | 0.705 | -58.332 83.761 |
Omnibus: | 0.205 | Durbin-Watson: | 1.742 |
Prob(Omnibus): | 0.903 | Jarque-Bera (JB): | 0.399 |
Skew: | -0.036 | Prob(JB): | 0.819 |
Kurtosis: | 2.204 | Cond. No. | 64.4 |