AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.360 0.555 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.601
Method: Least Squares F-statistic: 12.06
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.000120
Time: 11:50:21 Log-Likelihood: -100.84
No. Observations: 23 AIC: 209.7
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.4657 71.284 0.764 0.454 -94.734 203.665
C(dose)[T.1] 37.5736 76.054 0.494 0.627 -121.609 196.756
expression -0.0885 24.418 -0.004 0.997 -51.196 51.019
expression:C(dose)[T.1] 3.6542 25.124 0.145 0.886 -48.931 56.239
Omnibus: 0.893 Durbin-Watson: 1.818
Prob(Omnibus): 0.640 Jarque-Bera (JB): 0.773
Skew: 0.142 Prob(JB): 0.679
Kurtosis: 2.148 Cond. No. 116.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.01
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.37e-05
Time: 11:50:21 Log-Likelihood: -100.86
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.4266 17.374 2.557 0.019 8.184 80.669
C(dose)[T.1] 48.4931 11.862 4.088 0.001 23.748 73.238
expression 3.3633 5.605 0.600 0.555 -8.328 15.055
Omnibus: 0.988 Durbin-Watson: 1.850
Prob(Omnibus): 0.610 Jarque-Bera (JB): 0.810
Skew: 0.145 Prob(JB): 0.667
Kurtosis: 2.127 Cond. No. 17.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:50:21 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.367
Model: OLS Adj. R-squared: 0.337
Method: Least Squares F-statistic: 12.19
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00218
Time: 11:50:22 Log-Likelihood: -107.84
No. Observations: 23 AIC: 219.7
Df Residuals: 21 BIC: 222.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 11.5290 20.359 0.566 0.577 -30.810 53.868
expression 18.9559 5.430 3.491 0.002 7.663 30.248
Omnibus: 3.923 Durbin-Watson: 1.999
Prob(Omnibus): 0.141 Jarque-Bera (JB): 2.840
Skew: 0.861 Prob(JB): 0.242
Kurtosis: 2.998 Cond. No. 14.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.051 0.826 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.612
Model: OLS Adj. R-squared: 0.506
Method: Least Squares F-statistic: 5.776
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0127
Time: 11:50:22 Log-Likelihood: -68.206
No. Observations: 15 AIC: 144.4
Df Residuals: 11 BIC: 147.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -158.2034 150.006 -1.055 0.314 -488.365 171.958
C(dose)[T.1] 459.3052 192.670 2.384 0.036 35.241 883.369
expression 82.8999 54.990 1.508 0.160 -38.131 203.931
expression:C(dose)[T.1] -150.0404 70.347 -2.133 0.056 -304.872 4.791
Omnibus: 0.087 Durbin-Watson: 0.990
Prob(Omnibus): 0.957 Jarque-Bera (JB): 0.292
Skew: -0.116 Prob(JB): 0.864
Kurtosis: 2.357 Cond. No. 121.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.931
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0274
Time: 11:50:22 Log-Likelihood: -70.801
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.3304 106.870 0.855 0.410 -141.518 324.179
C(dose)[T.1] 49.4237 15.739 3.140 0.009 15.131 83.716
expression -8.7818 39.038 -0.225 0.826 -93.839 76.275
Omnibus: 2.767 Durbin-Watson: 0.776
Prob(Omnibus): 0.251 Jarque-Bera (JB): 1.967
Skew: -0.858 Prob(JB): 0.374
Kurtosis: 2.551 Cond. No. 43.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:50:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.0003258
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.986
Time: 11:50:22 Log-Likelihood: -75.300
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 96.1613 138.571 0.694 0.500 -203.202 395.525
expression -0.9119 50.519 -0.018 0.986 -110.052 108.228
Omnibus: 0.553 Durbin-Watson: 1.621
Prob(Omnibus): 0.759 Jarque-Bera (JB): 0.561
Skew: 0.037 Prob(JB): 0.755
Kurtosis: 2.055 Cond. No. 42.4