AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
6.145 | 0.022 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.752 |
Model: | OLS | Adj. R-squared: | 0.713 |
Method: | Least Squares | F-statistic: | 19.21 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.61e-06 |
Time: | 05:01:06 | Log-Likelihood: | -97.068 |
No. Observations: | 23 | AIC: | 202.1 |
Df Residuals: | 19 | BIC: | 206.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 95.2341 | 33.068 | 2.880 | 0.010 | 26.022 164.446 |
C(dose)[T.1] | 120.2890 | 54.500 | 2.207 | 0.040 | 6.219 234.359 |
expression | -7.9051 | 6.292 | -1.256 | 0.224 | -21.074 5.263 |
expression:C(dose)[T.1] | -13.1268 | 10.472 | -1.254 | 0.225 | -35.044 8.790 |
Omnibus: | 0.016 | Durbin-Watson: | 1.551 |
Prob(Omnibus): | 0.992 | Jarque-Bera (JB): | 0.122 |
Skew: | -0.039 | Prob(JB): | 0.941 |
Kurtosis: | 2.652 | Cond. No. | 95.2 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.732 |
Model: | OLS | Adj. R-squared: | 0.705 |
Method: | Least Squares | F-statistic: | 27.25 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.94e-06 |
Time: | 05:01:06 | Log-Likelihood: | -97.982 |
No. Observations: | 23 | AIC: | 202.0 |
Df Residuals: | 20 | BIC: | 205.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 119.8265 | 26.998 | 4.438 | 0.000 | 63.510 176.143 |
C(dose)[T.1] | 52.6318 | 7.676 | 6.857 | 0.000 | 36.621 68.643 |
expression | -12.6437 | 5.101 | -2.479 | 0.022 | -23.284 -2.004 |
Omnibus: | 0.135 | Durbin-Watson: | 1.714 |
Prob(Omnibus): | 0.935 | Jarque-Bera (JB): | 0.284 |
Skew: | -0.151 | Prob(JB): | 0.868 |
Kurtosis: | 2.548 | Cond. No. | 38.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:01:06 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.100 |
Model: | OLS | Adj. R-squared: | 0.058 |
Method: | Least Squares | F-statistic: | 2.344 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.141 |
Time: | 05:01:06 | Log-Likelihood: | -111.89 |
No. Observations: | 23 | AIC: | 227.8 |
Df Residuals: | 21 | BIC: | 230.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 151.6923 | 47.510 | 3.193 | 0.004 | 52.890 250.494 |
expression | -13.9403 | 9.106 | -1.531 | 0.141 | -32.877 4.996 |
Omnibus: | 3.775 | Durbin-Watson: | 2.269 |
Prob(Omnibus): | 0.151 | Jarque-Bera (JB): | 1.449 |
Skew: | 0.102 | Prob(JB): | 0.485 |
Kurtosis: | 1.787 | Cond. No. | 37.5 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.002 | 0.964 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.507 |
Model: | OLS | Adj. R-squared: | 0.373 |
Method: | Least Squares | F-statistic: | 3.771 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0440 |
Time: | 05:01:06 | Log-Likelihood: | -69.995 |
No. Observations: | 15 | AIC: | 148.0 |
Df Residuals: | 11 | BIC: | 150.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -35.1395 | 107.107 | -0.328 | 0.749 | -270.880 200.601 |
C(dose)[T.1] | 189.5222 | 124.150 | 1.527 | 0.155 | -83.731 462.775 |
expression | 18.7552 | 19.475 | 0.963 | 0.356 | -24.109 61.619 |
expression:C(dose)[T.1] | -25.6178 | 22.489 | -1.139 | 0.279 | -75.115 23.880 |
Omnibus: | 2.012 | Durbin-Watson: | 1.170 |
Prob(Omnibus): | 0.366 | Jarque-Bera (JB): | 1.366 |
Skew: | -0.715 | Prob(JB): | 0.505 |
Kurtosis: | 2.621 | Cond. No. | 136. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.887 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 05:01:06 | Log-Likelihood: | -70.832 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 69.9229 | 55.128 | 1.268 | 0.229 | -50.192 190.037 |
C(dose)[T.1] | 49.2115 | 15.742 | 3.126 | 0.009 | 14.913 83.510 |
expression | -0.4561 | 9.859 | -0.046 | 0.964 | -21.937 21.025 |
Omnibus: | 2.744 | Durbin-Watson: | 0.809 |
Prob(Omnibus): | 0.254 | Jarque-Bera (JB): | 1.884 |
Skew: | -0.848 | Prob(JB): | 0.390 |
Kurtosis: | 2.627 | Cond. No. | 40.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:01:06 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.0002052 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.989 |
Time: | 05:01:06 | Log-Likelihood: | -75.300 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 92.6641 | 70.721 | 1.310 | 0.213 | -60.120 245.448 |
expression | 0.1827 | 12.756 | 0.014 | 0.989 | -27.376 27.741 |
Omnibus: | 0.599 | Durbin-Watson: | 1.619 |
Prob(Omnibus): | 0.741 | Jarque-Bera (JB): | 0.580 |
Skew: | 0.050 | Prob(JB): | 0.748 |
Kurtosis: | 2.042 | Cond. No. | 39.8 |