AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
14.033 0.001 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.794
Model: OLS Adj. R-squared: 0.762
Method: Least Squares F-statistic: 24.46
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.75e-07
Time: 06:24:17 Log-Likelihood: -94.919
No. Observations: 23 AIC: 197.8
Df Residuals: 19 BIC: 202.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -793.1265 374.866 -2.116 0.048 -1577.731 -8.522
C(dose)[T.1] 132.2914 460.036 0.288 0.777 -830.575 1095.157
expression 96.9236 42.876 2.261 0.036 7.183 186.664
expression:C(dose)[T.1] -11.6207 52.100 -0.223 0.826 -120.668 97.427
Omnibus: 0.615 Durbin-Watson: 2.543
Prob(Omnibus): 0.735 Jarque-Bera (JB): 0.693
Skew: 0.290 Prob(JB): 0.707
Kurtosis: 2.378 Cond. No. 1.69e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.794
Model: OLS Adj. R-squared: 0.773
Method: Least Squares F-statistic: 38.49
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.39e-07
Time: 06:24:17 Log-Likelihood: -94.949
No. Observations: 23 AIC: 195.9
Df Residuals: 20 BIC: 199.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -724.3234 207.879 -3.484 0.002 -1157.952 -290.695
C(dose)[T.1] 29.7047 9.219 3.222 0.004 10.473 48.936
expression 89.0535 23.773 3.746 0.001 39.465 138.642
Omnibus: 0.695 Durbin-Watson: 2.484
Prob(Omnibus): 0.706 Jarque-Bera (JB): 0.748
Skew: 0.321 Prob(JB): 0.688
Kurtosis: 2.392 Cond. No. 557.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:24:17 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.687
Model: OLS Adj. R-squared: 0.672
Method: Least Squares F-statistic: 46.03
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.04e-06
Time: 06:24:17 Log-Likelihood: -99.757
No. Observations: 23 AIC: 203.5
Df Residuals: 21 BIC: 205.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1174.9763 184.976 -6.352 0.000 -1559.656 -790.297
expression 141.4662 20.851 6.785 0.000 98.104 184.828
Omnibus: 3.981 Durbin-Watson: 2.550
Prob(Omnibus): 0.137 Jarque-Bera (JB): 2.359
Skew: 0.750 Prob(JB): 0.307
Kurtosis: 3.460 Cond. No. 411.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.221 0.291 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.504
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 3.730
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0453
Time: 06:24:17 Log-Likelihood: -70.037
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -39.8791 764.521 -0.052 0.959 -1722.578 1642.820
C(dose)[T.1] -217.5264 836.681 -0.260 0.800 -2059.049 1623.996
expression 11.9099 84.843 0.140 0.891 -174.829 198.649
expression:C(dose)[T.1] 29.6983 92.881 0.320 0.755 -174.731 234.127
Omnibus: 0.453 Durbin-Watson: 0.871
Prob(Omnibus): 0.797 Jarque-Bera (JB): 0.472
Skew: -0.333 Prob(JB): 0.790
Kurtosis: 2.442 Cond. No. 1.51e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.500
Model: OLS Adj. R-squared: 0.416
Method: Least Squares F-statistic: 5.992
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0157
Time: 06:24:17 Log-Likelihood: -70.106
No. Observations: 15 AIC: 146.2
Df Residuals: 12 BIC: 148.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -263.1534 299.400 -0.879 0.397 -915.490 389.183
C(dose)[T.1] 49.9529 15.011 3.328 0.006 17.247 82.659
expression 36.6907 33.208 1.105 0.291 -35.662 109.044
Omnibus: 0.491 Durbin-Watson: 0.776
Prob(Omnibus): 0.782 Jarque-Bera (JB): 0.559
Skew: -0.322 Prob(JB): 0.756
Kurtosis: 2.308 Cond. No. 365.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:24:17 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.038
Model: OLS Adj. R-squared: -0.036
Method: Least Squares F-statistic: 0.5129
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.487
Time: 06:24:17 Log-Likelihood: -75.010
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -191.1574 397.836 -0.480 0.639 -1050.630 668.315
expression 31.6507 44.195 0.716 0.487 -63.827 127.129
Omnibus: 0.261 Durbin-Watson: 1.632
Prob(Omnibus): 0.878 Jarque-Bera (JB): 0.432
Skew: 0.155 Prob(JB): 0.806
Kurtosis: 2.228 Cond. No. 364.