AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.766 | 0.392 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.685 |
Model: | OLS | Adj. R-squared: | 0.635 |
Method: | Least Squares | F-statistic: | 13.77 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.24e-05 |
Time: | 05:08:16 | Log-Likelihood: | -99.822 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 19 | BIC: | 212.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -19.7887 | 425.570 | -0.046 | 0.963 | -910.517 870.940 |
C(dose)[T.1] | 784.3622 | 619.230 | 1.267 | 0.221 | -511.701 2080.425 |
expression | 6.8134 | 39.181 | 0.174 | 0.864 | -75.194 88.820 |
expression:C(dose)[T.1] | -66.7149 | 56.716 | -1.176 | 0.254 | -185.422 51.992 |
Omnibus: | 0.542 | Durbin-Watson: | 1.735 |
Prob(Omnibus): | 0.763 | Jarque-Bera (JB): | 0.531 |
Skew: | 0.314 | Prob(JB): | 0.767 |
Kurtosis: | 2.602 | Cond. No. | 2.05e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 19.59 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.95e-05 |
Time: | 05:08:16 | Log-Likelihood: | -100.63 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 326.0095 | 310.658 | 1.049 | 0.307 | -322.011 974.030 |
C(dose)[T.1] | 56.0373 | 9.143 | 6.129 | 0.000 | 36.965 75.109 |
expression | -25.0264 | 28.599 | -0.875 | 0.392 | -84.683 34.630 |
Omnibus: | 1.466 | Durbin-Watson: | 1.976 |
Prob(Omnibus): | 0.481 | Jarque-Bera (JB): | 0.953 |
Skew: | 0.118 | Prob(JB): | 0.621 |
Kurtosis: | 2.031 | Cond. No. | 796. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:08:16 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.027 |
Model: | OLS | Adj. R-squared: | -0.019 |
Method: | Least Squares | F-statistic: | 0.5863 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.452 |
Time: | 05:08:16 | Log-Likelihood: | -112.79 |
No. Observations: | 23 | AIC: | 229.6 |
Df Residuals: | 21 | BIC: | 231.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -292.6894 | 486.426 | -0.602 | 0.554 | -1304.269 718.890 |
expression | 34.1277 | 44.572 | 0.766 | 0.452 | -58.564 126.820 |
Omnibus: | 2.297 | Durbin-Watson: | 2.316 |
Prob(Omnibus): | 0.317 | Jarque-Bera (JB): | 1.527 |
Skew: | 0.401 | Prob(JB): | 0.466 |
Kurtosis: | 2.025 | Cond. No. | 752. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.214 | 0.652 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.561 |
Model: | OLS | Adj. R-squared: | 0.442 |
Method: | Least Squares | F-statistic: | 4.694 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0240 |
Time: | 05:08:16 | Log-Likelihood: | -69.118 |
No. Observations: | 15 | AIC: | 146.2 |
Df Residuals: | 11 | BIC: | 149.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 510.1295 | 1043.012 | 0.489 | 0.634 | -1785.523 2805.782 |
C(dose)[T.1] | -3169.6826 | 2000.116 | -1.585 | 0.141 | -7571.907 1232.542 |
expression | -42.1305 | 99.255 | -0.424 | 0.679 | -260.589 176.328 |
expression:C(dose)[T.1] | 303.9988 | 189.118 | 1.607 | 0.136 | -112.247 720.245 |
Omnibus: | 0.047 | Durbin-Watson: | 1.439 |
Prob(Omnibus): | 0.977 | Jarque-Bera (JB): | 0.195 |
Skew: | -0.106 | Prob(JB): | 0.907 |
Kurtosis: | 2.483 | Cond. No. | 3.54e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.458 |
Model: | OLS | Adj. R-squared: | 0.368 |
Method: | Least Squares | F-statistic: | 5.079 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0252 |
Time: | 05:08:16 | Log-Likelihood: | -70.700 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -369.7535 | 944.614 | -0.391 | 0.702 | -2427.891 1688.384 |
C(dose)[T.1] | 45.3027 | 17.725 | 2.556 | 0.025 | 6.684 83.921 |
expression | 41.6053 | 89.890 | 0.463 | 0.652 | -154.247 237.458 |
Omnibus: | 2.354 | Durbin-Watson: | 0.769 |
Prob(Omnibus): | 0.308 | Jarque-Bera (JB): | 1.688 |
Skew: | -0.787 | Prob(JB): | 0.430 |
Kurtosis: | 2.526 | Cond. No. | 1.29e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:08:16 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.164 |
Model: | OLS | Adj. R-squared: | 0.099 |
Method: | Least Squares | F-statistic: | 2.543 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.135 |
Time: | 05:08:16 | Log-Likelihood: | -73.960 |
No. Observations: | 15 | AIC: | 151.9 |
Df Residuals: | 13 | BIC: | 153.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1496.8633 | 997.410 | -1.501 | 0.157 | -3651.637 657.910 |
expression | 150.6504 | 94.468 | 1.595 | 0.135 | -53.435 354.735 |
Omnibus: | 0.514 | Durbin-Watson: | 1.348 |
Prob(Omnibus): | 0.774 | Jarque-Bera (JB): | 0.400 |
Skew: | -0.344 | Prob(JB): | 0.819 |
Kurtosis: | 2.592 | Cond. No. | 1.14e+03 |