AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.766 0.392 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.685
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 13.77
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.24e-05
Time: 05:08:16 Log-Likelihood: -99.822
No. Observations: 23 AIC: 207.6
Df Residuals: 19 BIC: 212.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -19.7887 425.570 -0.046 0.963 -910.517 870.940
C(dose)[T.1] 784.3622 619.230 1.267 0.221 -511.701 2080.425
expression 6.8134 39.181 0.174 0.864 -75.194 88.820
expression:C(dose)[T.1] -66.7149 56.716 -1.176 0.254 -185.422 51.992
Omnibus: 0.542 Durbin-Watson: 1.735
Prob(Omnibus): 0.763 Jarque-Bera (JB): 0.531
Skew: 0.314 Prob(JB): 0.767
Kurtosis: 2.602 Cond. No. 2.05e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.59
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.95e-05
Time: 05:08:16 Log-Likelihood: -100.63
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 326.0095 310.658 1.049 0.307 -322.011 974.030
C(dose)[T.1] 56.0373 9.143 6.129 0.000 36.965 75.109
expression -25.0264 28.599 -0.875 0.392 -84.683 34.630
Omnibus: 1.466 Durbin-Watson: 1.976
Prob(Omnibus): 0.481 Jarque-Bera (JB): 0.953
Skew: 0.118 Prob(JB): 0.621
Kurtosis: 2.031 Cond. No. 796.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:08:16 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.027
Model: OLS Adj. R-squared: -0.019
Method: Least Squares F-statistic: 0.5863
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.452
Time: 05:08:16 Log-Likelihood: -112.79
No. Observations: 23 AIC: 229.6
Df Residuals: 21 BIC: 231.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -292.6894 486.426 -0.602 0.554 -1304.269 718.890
expression 34.1277 44.572 0.766 0.452 -58.564 126.820
Omnibus: 2.297 Durbin-Watson: 2.316
Prob(Omnibus): 0.317 Jarque-Bera (JB): 1.527
Skew: 0.401 Prob(JB): 0.466
Kurtosis: 2.025 Cond. No. 752.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.214 0.652 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.561
Model: OLS Adj. R-squared: 0.442
Method: Least Squares F-statistic: 4.694
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0240
Time: 05:08:16 Log-Likelihood: -69.118
No. Observations: 15 AIC: 146.2
Df Residuals: 11 BIC: 149.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 510.1295 1043.012 0.489 0.634 -1785.523 2805.782
C(dose)[T.1] -3169.6826 2000.116 -1.585 0.141 -7571.907 1232.542
expression -42.1305 99.255 -0.424 0.679 -260.589 176.328
expression:C(dose)[T.1] 303.9988 189.118 1.607 0.136 -112.247 720.245
Omnibus: 0.047 Durbin-Watson: 1.439
Prob(Omnibus): 0.977 Jarque-Bera (JB): 0.195
Skew: -0.106 Prob(JB): 0.907
Kurtosis: 2.483 Cond. No. 3.54e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.458
Model: OLS Adj. R-squared: 0.368
Method: Least Squares F-statistic: 5.079
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0252
Time: 05:08:16 Log-Likelihood: -70.700
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -369.7535 944.614 -0.391 0.702 -2427.891 1688.384
C(dose)[T.1] 45.3027 17.725 2.556 0.025 6.684 83.921
expression 41.6053 89.890 0.463 0.652 -154.247 237.458
Omnibus: 2.354 Durbin-Watson: 0.769
Prob(Omnibus): 0.308 Jarque-Bera (JB): 1.688
Skew: -0.787 Prob(JB): 0.430
Kurtosis: 2.526 Cond. No. 1.29e+03

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:08:16 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.164
Model: OLS Adj. R-squared: 0.099
Method: Least Squares F-statistic: 2.543
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.135
Time: 05:08:16 Log-Likelihood: -73.960
No. Observations: 15 AIC: 151.9
Df Residuals: 13 BIC: 153.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1496.8633 997.410 -1.501 0.157 -3651.637 657.910
expression 150.6504 94.468 1.595 0.135 -53.435 354.735
Omnibus: 0.514 Durbin-Watson: 1.348
Prob(Omnibus): 0.774 Jarque-Bera (JB): 0.400
Skew: -0.344 Prob(JB): 0.819
Kurtosis: 2.592 Cond. No. 1.14e+03