AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.176 0.291 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 12.80
Date: Tue, 03 Dec 2024 Prob (F-statistic): 8.32e-05
Time: 11:40:03 Log-Likelihood: -100.39
No. Observations: 23 AIC: 208.8
Df Residuals: 19 BIC: 213.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 99.9059 63.982 1.561 0.135 -34.010 233.822
C(dose)[T.1] 65.0557 97.010 0.671 0.511 -137.988 268.100
expression -6.8738 9.581 -0.717 0.482 -26.927 13.180
expression:C(dose)[T.1] -2.1766 14.931 -0.146 0.886 -33.427 29.074
Omnibus: 0.149 Durbin-Watson: 1.912
Prob(Omnibus): 0.928 Jarque-Bera (JB): 0.364
Skew: 0.073 Prob(JB): 0.834
Kurtosis: 2.401 Cond. No. 185.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 20.17
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.60e-05
Time: 11:40:03 Log-Likelihood: -100.41
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 105.8645 48.004 2.205 0.039 5.730 205.999
C(dose)[T.1] 50.9750 8.797 5.795 0.000 32.625 69.325
expression -7.7701 7.166 -1.084 0.291 -22.719 7.178
Omnibus: 0.190 Durbin-Watson: 1.931
Prob(Omnibus): 0.909 Jarque-Bera (JB): 0.397
Skew: 0.080 Prob(JB): 0.820
Kurtosis: 2.377 Cond. No. 75.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:40:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.112
Model: OLS Adj. R-squared: 0.070
Method: Least Squares F-statistic: 2.650
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.118
Time: 11:40:03 Log-Likelihood: -111.74
No. Observations: 23 AIC: 227.5
Df Residuals: 21 BIC: 229.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 197.1130 72.434 2.721 0.013 46.479 347.747
expression -18.0535 11.090 -1.628 0.118 -41.116 5.009
Omnibus: 3.444 Durbin-Watson: 2.057
Prob(Omnibus): 0.179 Jarque-Bera (JB): 1.604
Skew: 0.294 Prob(JB): 0.448
Kurtosis: 1.847 Cond. No. 71.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.624 0.445 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.485
Model: OLS Adj. R-squared: 0.345
Method: Least Squares F-statistic: 3.459
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0548
Time: 11:40:03 Log-Likelihood: -70.317
No. Observations: 15 AIC: 148.6
Df Residuals: 11 BIC: 151.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -147.7073 320.924 -0.460 0.654 -854.055 558.641
C(dose)[T.1] 204.5929 337.341 0.606 0.557 -537.889 947.074
expression 33.0112 49.211 0.671 0.516 -75.302 141.325
expression:C(dose)[T.1] -23.3354 51.982 -0.449 0.662 -137.748 91.077
Omnibus: 3.094 Durbin-Watson: 0.874
Prob(Omnibus): 0.213 Jarque-Bera (JB): 1.956
Skew: -0.879 Prob(JB): 0.376
Kurtosis: 2.808 Cond. No. 434.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.476
Model: OLS Adj. R-squared: 0.389
Method: Least Squares F-statistic: 5.451
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0207
Time: 11:40:03 Log-Likelihood: -70.453
No. Observations: 15 AIC: 146.9
Df Residuals: 12 BIC: 149.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -11.4108 100.444 -0.114 0.911 -230.260 207.438
C(dose)[T.1] 53.3456 16.220 3.289 0.006 18.005 88.686
expression 12.0974 15.316 0.790 0.445 -21.274 45.469
Omnibus: 3.591 Durbin-Watson: 0.797
Prob(Omnibus): 0.166 Jarque-Bera (JB): 2.177
Skew: -0.933 Prob(JB): 0.337
Kurtosis: 2.941 Cond. No. 85.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:40:03 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.073
Method: Least Squares F-statistic: 0.04826
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.830
Time: 11:40:03 Log-Likelihood: -75.272
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 120.3785 122.022 0.987 0.342 -143.234 383.991
expression -4.2171 19.198 -0.220 0.830 -45.691 37.257
Omnibus: 0.397 Durbin-Watson: 1.584
Prob(Omnibus): 0.820 Jarque-Bera (JB): 0.499
Skew: 0.068 Prob(JB): 0.779
Kurtosis: 2.117 Cond. No. 78.3