AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.782 0.387 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.677
Model: OLS Adj. R-squared: 0.626
Method: Least Squares F-statistic: 13.26
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.64e-05
Time: 06:26:38 Log-Likelihood: -100.11
No. Observations: 23 AIC: 208.2
Df Residuals: 19 BIC: 212.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.3230 56.195 0.789 0.440 -73.293 161.939
C(dose)[T.1] -32.5433 94.446 -0.345 0.734 -230.222 165.135
expression 1.8485 10.449 0.177 0.861 -20.021 23.718
expression:C(dose)[T.1] 16.6184 17.944 0.926 0.366 -20.940 54.176
Omnibus: 0.654 Durbin-Watson: 2.195
Prob(Omnibus): 0.721 Jarque-Bera (JB): 0.685
Skew: 0.337 Prob(JB): 0.710
Kurtosis: 2.490 Cond. No. 145.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.61
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.93e-05
Time: 06:26:38 Log-Likelihood: -100.62
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 14.1914 45.654 0.311 0.759 -81.041 109.424
C(dose)[T.1] 54.5483 8.712 6.261 0.000 36.376 72.721
expression 7.4831 8.464 0.884 0.387 -10.173 25.140
Omnibus: 0.365 Durbin-Watson: 2.218
Prob(Omnibus): 0.833 Jarque-Bera (JB): 0.498
Skew: 0.232 Prob(JB): 0.779
Kurtosis: 2.449 Cond. No. 58.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:26:38 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.003682
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.952
Time: 06:26:38 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 84.2058 74.322 1.133 0.270 -70.356 238.767
expression -0.8516 14.036 -0.061 0.952 -30.040 28.337
Omnibus: 3.310 Durbin-Watson: 2.472
Prob(Omnibus): 0.191 Jarque-Bera (JB): 1.571
Skew: 0.289 Prob(JB): 0.456
Kurtosis: 1.858 Cond. No. 56.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.575 0.135 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.603
Model: OLS Adj. R-squared: 0.495
Method: Least Squares F-statistic: 5.571
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0143
Time: 06:26:38 Log-Likelihood: -68.370
No. Observations: 15 AIC: 144.7
Df Residuals: 11 BIC: 147.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 73.6975 138.505 0.532 0.605 -231.150 378.544
C(dose)[T.1] -147.8204 166.691 -0.887 0.394 -514.705 219.064
expression -0.9451 20.825 -0.045 0.965 -46.780 44.890
expression:C(dose)[T.1] 32.3916 25.788 1.256 0.235 -24.366 89.150
Omnibus: 2.399 Durbin-Watson: 0.809
Prob(Omnibus): 0.301 Jarque-Bera (JB): 1.163
Skew: -0.681 Prob(JB): 0.559
Kurtosis: 3.076 Cond. No. 222.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.546
Model: OLS Adj. R-squared: 0.471
Method: Least Squares F-statistic: 7.221
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00874
Time: 06:26:38 Log-Likelihood: -69.375
No. Observations: 15 AIC: 144.7
Df Residuals: 12 BIC: 146.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -66.4151 84.057 -0.790 0.445 -249.560 116.730
C(dose)[T.1] 60.6415 15.964 3.799 0.003 25.860 95.423
expression 20.1785 12.575 1.605 0.135 -7.219 47.576
Omnibus: 0.888 Durbin-Watson: 0.684
Prob(Omnibus): 0.642 Jarque-Bera (JB): 0.752
Skew: -0.470 Prob(JB): 0.687
Kurtosis: 2.437 Cond. No. 77.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:26:38 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.005259
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.943
Time: 06:26:38 Log-Likelihood: -75.297
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 101.0308 102.053 0.990 0.340 -119.441 321.503
expression -1.1633 16.041 -0.073 0.943 -35.817 33.491
Omnibus: 0.539 Durbin-Watson: 1.616
Prob(Omnibus): 0.764 Jarque-Bera (JB): 0.558
Skew: 0.053 Prob(JB): 0.757
Kurtosis: 2.062 Cond. No. 65.5