AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.004 | 0.948 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.72 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000142 |
Time: | 04:35:28 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 32.5184 | 272.625 | 0.119 | 0.906 | -538.093 603.129 |
C(dose)[T.1] | 73.4466 | 431.269 | 0.170 | 0.867 | -829.210 976.103 |
expression | 2.1586 | 27.125 | 0.080 | 0.937 | -54.615 58.932 |
expression:C(dose)[T.1] | -2.0051 | 42.294 | -0.047 | 0.963 | -90.527 86.517 |
Omnibus: | 0.271 | Durbin-Watson: | 1.903 |
Prob(Omnibus): | 0.873 | Jarque-Bera (JB): | 0.454 |
Skew: | 0.058 | Prob(JB): | 0.797 |
Kurtosis: | 2.322 | Cond. No. | 1.23e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 04:35:28 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 40.8056 | 203.925 | 0.200 | 0.843 | -384.574 466.185 |
C(dose)[T.1] | 53.0064 | 10.109 | 5.243 | 0.000 | 31.919 74.094 |
expression | 1.3339 | 20.286 | 0.066 | 0.948 | -40.982 43.649 |
Omnibus: | 0.257 | Durbin-Watson: | 1.902 |
Prob(Omnibus): | 0.879 | Jarque-Bera (JB): | 0.445 |
Skew: | 0.051 | Prob(JB): | 0.801 |
Kurtosis: | 2.326 | Cond. No. | 479. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:35:28 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.167 |
Model: | OLS | Adj. R-squared: | 0.127 |
Method: | Least Squares | F-statistic: | 4.204 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0530 |
Time: | 04:35:28 | Log-Likelihood: | -111.01 |
No. Observations: | 23 | AIC: | 226.0 |
Df Residuals: | 21 | BIC: | 228.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -471.9144 | 269.118 | -1.754 | 0.094 | -1031.576 87.748 |
expression | 54.2587 | 26.463 | 2.050 | 0.053 | -0.773 109.291 |
Omnibus: | 3.468 | Durbin-Watson: | 2.489 |
Prob(Omnibus): | 0.177 | Jarque-Bera (JB): | 1.396 |
Skew: | 0.103 | Prob(JB): | 0.498 |
Kurtosis: | 1.811 | Cond. No. | 419. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.231 | 0.640 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.512 |
Model: | OLS | Adj. R-squared: | 0.378 |
Method: | Least Squares | F-statistic: | 3.840 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0419 |
Time: | 04:35:28 | Log-Likelihood: | -69.926 |
No. Observations: | 15 | AIC: | 147.9 |
Df Residuals: | 11 | BIC: | 150.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -519.5927 | 501.631 | -1.036 | 0.323 | -1623.675 584.489 |
C(dose)[T.1] | 707.2229 | 606.540 | 1.166 | 0.268 | -627.764 2042.209 |
expression | 62.6379 | 53.513 | 1.171 | 0.267 | -55.143 180.419 |
expression:C(dose)[T.1] | -70.1865 | 64.624 | -1.086 | 0.301 | -212.423 72.050 |
Omnibus: | 1.539 | Durbin-Watson: | 1.048 |
Prob(Omnibus): | 0.463 | Jarque-Bera (JB): | 0.984 |
Skew: | -0.607 | Prob(JB): | 0.611 |
Kurtosis: | 2.684 | Cond. No. | 1.08e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.459 |
Model: | OLS | Adj. R-squared: | 0.369 |
Method: | Least Squares | F-statistic: | 5.094 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0250 |
Time: | 04:35:29 | Log-Likelihood: | -70.690 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -68.5731 | 283.486 | -0.242 | 0.813 | -686.236 549.089 |
C(dose)[T.1] | 48.6915 | 15.626 | 3.116 | 0.009 | 14.645 82.738 |
expression | 14.5120 | 30.225 | 0.480 | 0.640 | -51.342 80.366 |
Omnibus: | 3.559 | Durbin-Watson: | 0.773 |
Prob(Omnibus): | 0.169 | Jarque-Bera (JB): | 2.237 |
Skew: | -0.944 | Prob(JB): | 0.327 |
Kurtosis: | 2.868 | Cond. No. | 347. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:35:29 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.022 |
Model: | OLS | Adj. R-squared: | -0.054 |
Method: | Least Squares | F-statistic: | 0.2863 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.602 |
Time: | 04:35:29 | Log-Likelihood: | -75.137 |
No. Observations: | 15 | AIC: | 154.3 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -102.1268 | 366.078 | -0.279 | 0.785 | -892.990 688.737 |
expression | 20.8508 | 38.970 | 0.535 | 0.602 | -63.340 105.041 |
Omnibus: | 1.901 | Durbin-Watson: | 1.674 |
Prob(Omnibus): | 0.387 | Jarque-Bera (JB): | 0.950 |
Skew: | 0.124 | Prob(JB): | 0.622 |
Kurtosis: | 1.793 | Cond. No. | 346. |