AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.004 | 0.948 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.594 | 
  | Method: | Least Squares | F-statistic: | 11.72 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.000142 | 
  | Time: | 09:45:33 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 210.1 | 
  | Df Residuals: | 19 | BIC: | 214.7 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 32.5184 | 272.625 | 0.119 | 0.906 | -538.093   603.129 | 
  | C(dose)[T.1] | 73.4466 | 431.269 | 0.170 | 0.867 | -829.210   976.103 | 
  | expression | 2.1586 | 27.125 | 0.080 | 0.937 | -54.615    58.932 | 
  | expression:C(dose)[T.1] | -2.0051 | 42.294 | -0.047 | 0.963 | -90.527    86.517 | 
  | Omnibus: | 0.271 | Durbin-Watson: | 1.903 | 
  | Prob(Omnibus): | 0.873 | Jarque-Bera (JB): | 0.454 | 
  | Skew: | 0.058 | Prob(JB): | 0.797 | 
  | Kurtosis: | 2.322 | Cond. No. | 1.23e+03 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.614 | 
  | Method: | Least Squares | F-statistic: | 18.50 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 2.83e-05 | 
  | Time: | 09:45:33 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 208.1 | 
  | Df Residuals: | 20 | BIC: | 211.5 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 40.8056 | 203.925 | 0.200 | 0.843 | -384.574   466.185 | 
  | C(dose)[T.1] | 53.0064 | 10.109 | 5.243 | 0.000 | 31.919    74.094 | 
  | expression | 1.3339 | 20.286 | 0.066 | 0.948 | -40.982    43.649 | 
  | Omnibus: | 0.257 | Durbin-Watson: | 1.902 | 
  | Prob(Omnibus): | 0.879 | Jarque-Bera (JB): | 0.445 | 
  | Skew: | 0.051 | Prob(JB): | 0.801 | 
  | Kurtosis: | 2.326 | Cond. No. | 479. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 09:45:33 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.167 | 
  | Model: | OLS | Adj. R-squared: | 0.127 | 
  | Method: | Least Squares | F-statistic: | 4.204 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0530 | 
  | Time: | 09:45:33 | Log-Likelihood: | -111.01 | 
  | No. Observations: | 23 | AIC: | 226.0 | 
  | Df Residuals: | 21 | BIC: | 228.3 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -471.9144 | 269.118 | -1.754 | 0.094 | -1031.576    87.748 | 
  | expression | 54.2587 | 26.463 | 2.050 | 0.053 | -0.773   109.291 | 
  | Omnibus: | 3.468 | Durbin-Watson: | 2.489 | 
  | Prob(Omnibus): | 0.177 | Jarque-Bera (JB): | 1.396 | 
  | Skew: | 0.103 | Prob(JB): | 0.498 | 
  | Kurtosis: | 1.811 | Cond. No. | 419. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.231 | 0.640 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.512 | 
  | Model: | OLS | Adj. R-squared: | 0.378 | 
  | Method: | Least Squares | F-statistic: | 3.840 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0419 | 
  | Time: | 09:45:33 | Log-Likelihood: | -69.926 | 
  | No. Observations: | 15 | AIC: | 147.9 | 
  | Df Residuals: | 11 | BIC: | 150.7 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -519.5927 | 501.631 | -1.036 | 0.323 | -1623.675   584.489 | 
  | C(dose)[T.1] | 707.2229 | 606.540 | 1.166 | 0.268 | -627.764  2042.209 | 
  | expression | 62.6379 | 53.513 | 1.171 | 0.267 | -55.143   180.419 | 
  | expression:C(dose)[T.1] | -70.1865 | 64.624 | -1.086 | 0.301 | -212.423    72.050 | 
  | Omnibus: | 1.539 | Durbin-Watson: | 1.048 | 
  | Prob(Omnibus): | 0.463 | Jarque-Bera (JB): | 0.984 | 
  | Skew: | -0.607 | Prob(JB): | 0.611 | 
  | Kurtosis: | 2.684 | Cond. No. | 1.08e+03 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.459 | 
  | Model: | OLS | Adj. R-squared: | 0.369 | 
  | Method: | Least Squares | F-statistic: | 5.094 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0250 | 
  | Time: | 09:45:33 | Log-Likelihood: | -70.690 | 
  | No. Observations: | 15 | AIC: | 147.4 | 
  | Df Residuals: | 12 | BIC: | 149.5 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -68.5731 | 283.486 | -0.242 | 0.813 | -686.236   549.089 | 
  | C(dose)[T.1] | 48.6915 | 15.626 | 3.116 | 0.009 | 14.645    82.738 | 
  | expression | 14.5120 | 30.225 | 0.480 | 0.640 | -51.342    80.366 | 
  | Omnibus: | 3.559 | Durbin-Watson: | 0.773 | 
  | Prob(Omnibus): | 0.169 | Jarque-Bera (JB): | 2.237 | 
  | Skew: | -0.944 | Prob(JB): | 0.327 | 
  | Kurtosis: | 2.868 | Cond. No. | 347. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 09:45:33 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.022 | 
  | Model: | OLS | Adj. R-squared: | -0.054 | 
  | Method: | Least Squares | F-statistic: | 0.2863 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.602 | 
  | Time: | 09:45:33 | Log-Likelihood: | -75.137 | 
  | No. Observations: | 15 | AIC: | 154.3 | 
  | Df Residuals: | 13 | BIC: | 155.7 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -102.1268 | 366.078 | -0.279 | 0.785 | -892.990   688.737 | 
  | expression | 20.8508 | 38.970 | 0.535 | 0.602 | -63.340   105.041 | 
  | Omnibus: | 1.901 | Durbin-Watson: | 1.674 | 
  | Prob(Omnibus): | 0.387 | Jarque-Bera (JB): | 0.950 | 
  | Skew: | 0.124 | Prob(JB): | 0.622 | 
  | Kurtosis: | 1.793 | Cond. No. | 346. |