AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.002 | 0.965 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.598 |
Method: | Least Squares | F-statistic: | 11.90 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000130 |
Time: | 04:27:41 | Log-Likelihood: | -100.95 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 121.5188 | 239.169 | 0.508 | 0.617 | -379.067 622.105 |
C(dose)[T.1] | -97.4781 | 343.348 | -0.284 | 0.780 | -816.115 621.158 |
expression | -7.6694 | 27.242 | -0.282 | 0.781 | -64.688 49.349 |
expression:C(dose)[T.1] | 16.7948 | 38.293 | 0.439 | 0.666 | -63.353 96.943 |
Omnibus: | 0.581 | Durbin-Watson: | 1.890 |
Prob(Omnibus): | 0.748 | Jarque-Bera (JB): | 0.616 |
Skew: | 0.048 | Prob(JB): | 0.735 |
Kurtosis: | 2.204 | Cond. No. | 905. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 04:27:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 46.9191 | 164.709 | 0.285 | 0.779 | -296.658 390.497 |
C(dose)[T.1] | 53.0261 | 11.234 | 4.720 | 0.000 | 29.591 76.461 |
expression | 0.8305 | 18.754 | 0.044 | 0.965 | -38.291 39.952 |
Omnibus: | 0.360 | Durbin-Watson: | 1.901 |
Prob(Omnibus): | 0.835 | Jarque-Bera (JB): | 0.507 |
Skew: | 0.067 | Prob(JB): | 0.776 |
Kurtosis: | 2.285 | Cond. No. | 342. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:27:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.258 |
Model: | OLS | Adj. R-squared: | 0.223 |
Method: | Least Squares | F-statistic: | 7.310 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0133 |
Time: | 04:27:41 | Log-Likelihood: | -109.67 |
No. Observations: | 23 | AIC: | 223.3 |
Df Residuals: | 21 | BIC: | 225.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -423.2282 | 186.125 | -2.274 | 0.034 | -810.296 -36.160 |
expression | 56.1603 | 20.772 | 2.704 | 0.013 | 12.963 99.357 |
Omnibus: | 2.153 | Durbin-Watson: | 2.521 |
Prob(Omnibus): | 0.341 | Jarque-Bera (JB): | 1.157 |
Skew: | 0.151 | Prob(JB): | 0.561 |
Kurtosis: | 1.943 | Cond. No. | 272. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.048 | 0.830 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.534 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 4.195 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0331 |
Time: | 04:27:41 | Log-Likelihood: | -69.580 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 11 | BIC: | 150.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 370.1470 | 292.278 | 1.266 | 0.232 | -273.152 1013.446 |
C(dose)[T.1] | -431.6002 | 346.112 | -1.247 | 0.238 | -1193.388 330.187 |
expression | -37.4076 | 36.092 | -1.036 | 0.322 | -116.845 42.030 |
expression:C(dose)[T.1] | 60.4549 | 43.318 | 1.396 | 0.190 | -34.888 155.798 |
Omnibus: | 0.915 | Durbin-Watson: | 1.414 |
Prob(Omnibus): | 0.633 | Jarque-Bera (JB): | 0.757 |
Skew: | -0.253 | Prob(JB): | 0.685 |
Kurtosis: | 2.023 | Cond. No. | 533. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 4.929 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0274 |
Time: | 04:27:41 | Log-Likelihood: | -70.803 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 30.5364 | 168.166 | 0.182 | 0.859 | -335.867 396.939 |
C(dose)[T.1] | 50.8641 | 17.443 | 2.916 | 0.013 | 12.859 88.869 |
expression | 4.5588 | 20.732 | 0.220 | 0.830 | -40.613 49.731 |
Omnibus: | 2.127 | Durbin-Watson: | 0.771 |
Prob(Omnibus): | 0.345 | Jarque-Bera (JB): | 1.592 |
Skew: | -0.745 | Prob(JB): | 0.451 |
Kurtosis: | 2.429 | Cond. No. | 173. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:27:41 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.062 |
Model: | OLS | Adj. R-squared: | -0.010 |
Method: | Least Squares | F-statistic: | 0.8586 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.371 |
Time: | 04:27:41 | Log-Likelihood: | -74.820 |
No. Observations: | 15 | AIC: | 153.6 |
Df Residuals: | 13 | BIC: | 155.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 265.2463 | 185.430 | 1.430 | 0.176 | -135.351 665.843 |
expression | -21.7262 | 23.447 | -0.927 | 0.371 | -72.380 28.928 |
Omnibus: | 0.813 | Durbin-Watson: | 1.673 |
Prob(Omnibus): | 0.666 | Jarque-Bera (JB): | 0.650 |
Skew: | -0.001 | Prob(JB): | 0.722 |
Kurtosis: | 1.980 | Cond. No. | 151. |