AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.579 | 0.456 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.35 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000104 |
Time: | 04:31:39 | Log-Likelihood: | -100.66 |
No. Observations: | 23 | AIC: | 209.3 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 166.7179 | 266.784 | 0.625 | 0.539 | -391.667 725.102 |
C(dose)[T.1] | 223.2283 | 483.312 | 0.462 | 0.649 | -788.356 1234.812 |
expression | -11.2405 | 26.647 | -0.422 | 0.678 | -67.012 44.531 |
expression:C(dose)[T.1] | -16.0487 | 47.184 | -0.340 | 0.737 | -114.805 82.708 |
Omnibus: | 0.084 | Durbin-Watson: | 1.921 |
Prob(Omnibus): | 0.959 | Jarque-Bera (JB): | 0.204 |
Skew: | -0.123 | Prob(JB): | 0.903 |
Kurtosis: | 2.609 | Cond. No. | 1.35e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.625 |
Method: | Least Squares | F-statistic: | 19.32 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.13e-05 |
Time: | 04:31:39 | Log-Likelihood: | -100.73 |
No. Observations: | 23 | AIC: | 207.5 |
Df Residuals: | 20 | BIC: | 210.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 217.9501 | 215.272 | 1.012 | 0.323 | -231.100 667.000 |
C(dose)[T.1] | 58.8848 | 11.309 | 5.207 | 0.000 | 35.294 82.476 |
expression | -16.3589 | 21.499 | -0.761 | 0.456 | -61.205 28.487 |
Omnibus: | 0.089 | Durbin-Watson: | 1.980 |
Prob(Omnibus): | 0.956 | Jarque-Bera (JB): | 0.297 |
Skew: | -0.086 | Prob(JB): | 0.862 |
Kurtosis: | 2.471 | Cond. No. | 513. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:31:39 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.197 |
Model: | OLS | Adj. R-squared: | 0.158 |
Method: | Least Squares | F-statistic: | 5.139 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0341 |
Time: | 04:31:39 | Log-Likelihood: | -110.59 |
No. Observations: | 23 | AIC: | 225.2 |
Df Residuals: | 21 | BIC: | 227.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -487.8970 | 250.467 | -1.948 | 0.065 | -1008.771 32.977 |
expression | 55.8044 | 24.616 | 2.267 | 0.034 | 4.612 106.997 |
Omnibus: | 3.874 | Durbin-Watson: | 2.364 |
Prob(Omnibus): | 0.144 | Jarque-Bera (JB): | 1.719 |
Skew: | 0.314 | Prob(JB): | 0.423 |
Kurtosis: | 1.817 | Cond. No. | 398. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.680 | 0.219 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.516 |
Model: | OLS | Adj. R-squared: | 0.385 |
Method: | Least Squares | F-statistic: | 3.917 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0398 |
Time: | 04:31:39 | Log-Likelihood: | -69.850 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 11 | BIC: | 150.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -381.4310 | 546.749 | -0.698 | 0.500 | -1584.818 821.956 |
C(dose)[T.1] | 48.3831 | 729.735 | 0.066 | 0.948 | -1557.753 1654.519 |
expression | 48.7858 | 59.413 | 0.821 | 0.429 | -81.981 179.552 |
expression:C(dose)[T.1] | 0.0881 | 79.296 | 0.001 | 0.999 | -174.441 174.617 |
Omnibus: | 4.206 | Durbin-Watson: | 0.850 |
Prob(Omnibus): | 0.122 | Jarque-Bera (JB): | 2.057 |
Skew: | -0.877 | Prob(JB): | 0.357 |
Kurtosis: | 3.467 | Cond. No. | 1.21e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.516 |
Model: | OLS | Adj. R-squared: | 0.436 |
Method: | Least Squares | F-statistic: | 6.409 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0128 |
Time: | 04:31:39 | Log-Likelihood: | -69.850 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 12 | BIC: | 147.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -381.8860 | 346.781 | -1.101 | 0.292 | -1137.457 373.685 |
C(dose)[T.1] | 49.1937 | 14.741 | 3.337 | 0.006 | 17.075 81.312 |
expression | 48.8352 | 37.673 | 1.296 | 0.219 | -33.247 130.917 |
Omnibus: | 4.204 | Durbin-Watson: | 0.850 |
Prob(Omnibus): | 0.122 | Jarque-Bera (JB): | 2.056 |
Skew: | -0.876 | Prob(JB): | 0.358 |
Kurtosis: | 3.466 | Cond. No. | 440. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:31:39 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.068 |
Model: | OLS | Adj. R-squared: | -0.004 |
Method: | Least Squares | F-statistic: | 0.9449 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.349 |
Time: | 04:31:39 | Log-Likelihood: | -74.774 |
No. Observations: | 15 | AIC: | 153.5 |
Df Residuals: | 13 | BIC: | 155.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -355.8150 | 462.510 | -0.769 | 0.455 | -1355.008 643.378 |
expression | 48.8532 | 50.258 | 0.972 | 0.349 | -59.723 157.429 |
Omnibus: | 1.926 | Durbin-Watson: | 1.495 |
Prob(Omnibus): | 0.382 | Jarque-Bera (JB): | 0.945 |
Skew: | 0.098 | Prob(JB): | 0.623 |
Kurtosis: | 1.786 | Cond. No. | 439. |