AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 1.234 | 0.280 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.702 | 
  | Model: | OLS | Adj. R-squared: | 0.655 | 
  | Method: | Least Squares | F-statistic: | 14.91 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.14e-05 | 
  | Time: | 10:58:21 | Log-Likelihood: | -99.189 | 
  | No. Observations: | 23 | AIC: | 206.4 | 
  | Df Residuals: | 19 | BIC: | 210.9 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -605.8181 | 379.324 | -1.597 | 0.127 | -1399.753   188.117 | 
  | C(dose)[T.1] | 1055.0428 | 702.094 | 1.503 | 0.149 | -414.458  2524.543 | 
  | expression | 57.3273 | 32.943 | 1.740 | 0.098 | -11.623   126.278 | 
  | expression:C(dose)[T.1] | -86.4669 | 60.197 | -1.436 | 0.167 | -212.461    39.527 | 
  | Omnibus: | 0.040 | Durbin-Watson: | 1.612 | 
  | Prob(Omnibus): | 0.980 | Jarque-Bera (JB): | 0.116 | 
  | Skew: | -0.066 | Prob(JB): | 0.944 | 
  | Kurtosis: | 2.678 | Cond. No. | 2.37e+03 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.669 | 
  | Model: | OLS | Adj. R-squared: | 0.636 | 
  | Method: | Least Squares | F-statistic: | 20.25 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 1.56e-05 | 
  | Time: | 10:58:21 | Log-Likelihood: | -100.37 | 
  | No. Observations: | 23 | AIC: | 206.7 | 
  | Df Residuals: | 20 | BIC: | 210.2 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -307.6781 | 325.829 | -0.944 | 0.356 | -987.345   371.988 | 
  | C(dose)[T.1] | 46.6638 | 10.418 | 4.479 | 0.000 | 24.933    68.395 | 
  | expression | 31.4321 | 28.296 | 1.111 | 0.280 | -27.592    90.456 | 
  | Omnibus: | 0.191 | Durbin-Watson: | 1.833 | 
  | Prob(Omnibus): | 0.909 | Jarque-Bera (JB): | 0.395 | 
  | Skew: | 0.098 | Prob(JB): | 0.821 | 
  | Kurtosis: | 2.388 | Cond. No. | 898. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 10:58:21 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.338 | 
  | Model: | OLS | Adj. R-squared: | 0.306 | 
  | Method: | Least Squares | F-statistic: | 10.71 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00363 | 
  | Time: | 10:58:21 | Log-Likelihood: | -108.36 | 
  | No. Observations: | 23 | AIC: | 220.7 | 
  | Df Residuals: | 21 | BIC: | 223.0 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -1134.2499 | 370.910 | -3.058 | 0.006 | -1905.599  -362.901 | 
  | expression | 104.5187 | 31.930 | 3.273 | 0.004 | 38.116   170.921 | 
  | Omnibus: | 2.556 | Durbin-Watson: | 2.128 | 
  | Prob(Omnibus): | 0.279 | Jarque-Bera (JB): | 2.166 | 
  | Skew: | 0.668 | Prob(JB): | 0.339 | 
  | Kurtosis: | 2.312 | Cond. No. | 739. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.018 | 0.895 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.471 | 
  | Model: | OLS | Adj. R-squared: | 0.326 | 
  | Method: | Least Squares | F-statistic: | 3.261 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0632 | 
  | Time: | 10:58:21 | Log-Likelihood: | -70.528 | 
  | No. Observations: | 15 | AIC: | 149.1 | 
  | Df Residuals: | 11 | BIC: | 151.9 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -115.5390 | 445.913 | -0.259 | 0.800 | -1096.988   865.910 | 
  | C(dose)[T.1] | 441.0547 | 592.178 | 0.745 | 0.472 | -862.321  1744.430 | 
  | expression | 17.2904 | 42.124 | 0.410 | 0.689 | -75.424   110.005 | 
  | expression:C(dose)[T.1] | -37.1537 | 56.091 | -0.662 | 0.521 | -160.610    86.303 | 
  | Omnibus: | 4.498 | Durbin-Watson: | 0.924 | 
  | Prob(Omnibus): | 0.106 | Jarque-Bera (JB): | 2.587 | 
  | Skew: | -1.013 | Prob(JB): | 0.274 | 
  | Kurtosis: | 3.184 | Cond. No. | 1.07e+03 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.450 | 
  | Model: | OLS | Adj. R-squared: | 0.358 | 
  | Method: | Least Squares | F-statistic: | 4.901 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0278 | 
  | Time: | 10:58:21 | Log-Likelihood: | -70.822 | 
  | No. Observations: | 15 | AIC: | 147.6 | 
  | Df Residuals: | 12 | BIC: | 149.8 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 106.1986 | 287.603 | 0.369 | 0.718 | -520.435   732.833 | 
  | C(dose)[T.1] | 48.9562 | 15.828 | 3.093 | 0.009 | 14.470    83.443 | 
  | expression | -3.6638 | 27.157 | -0.135 | 0.895 | -62.833    55.506 | 
  | Omnibus: | 2.942 | Durbin-Watson: | 0.815 | 
  | Prob(Omnibus): | 0.230 | Jarque-Bera (JB): | 1.937 | 
  | Skew: | -0.869 | Prob(JB): | 0.380 | 
  | Kurtosis: | 2.721 | Cond. No. | 391. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 10:58:21 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.011 | 
  | Model: | OLS | Adj. R-squared: | -0.065 | 
  | Method: | Least Squares | F-statistic: | 0.1423 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.712 | 
  | Time: | 10:58:21 | Log-Likelihood: | -75.218 | 
  | No. Observations: | 15 | AIC: | 154.4 | 
  | Df Residuals: | 13 | BIC: | 155.9 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 231.9700 | 366.714 | 0.633 | 0.538 | -560.267  1024.207 | 
  | expression | -13.1130 | 34.756 | -0.377 | 0.712 | -88.199    61.973 | 
  | Omnibus: | 0.460 | Durbin-Watson: | 1.665 | 
  | Prob(Omnibus): | 0.794 | Jarque-Bera (JB): | 0.525 | 
  | Skew: | -0.052 | Prob(JB): | 0.769 | 
  | Kurtosis: | 2.089 | Cond. No. | 386. |