AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.234 | 0.280 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.702 |
Model: | OLS | Adj. R-squared: | 0.655 |
Method: | Least Squares | F-statistic: | 14.91 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.14e-05 |
Time: | 03:32:50 | Log-Likelihood: | -99.189 |
No. Observations: | 23 | AIC: | 206.4 |
Df Residuals: | 19 | BIC: | 210.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -605.8181 | 379.324 | -1.597 | 0.127 | -1399.753 188.117 |
C(dose)[T.1] | 1055.0428 | 702.094 | 1.503 | 0.149 | -414.458 2524.543 |
expression | 57.3273 | 32.943 | 1.740 | 0.098 | -11.623 126.278 |
expression:C(dose)[T.1] | -86.4669 | 60.197 | -1.436 | 0.167 | -212.461 39.527 |
Omnibus: | 0.040 | Durbin-Watson: | 1.612 |
Prob(Omnibus): | 0.980 | Jarque-Bera (JB): | 0.116 |
Skew: | -0.066 | Prob(JB): | 0.944 |
Kurtosis: | 2.678 | Cond. No. | 2.37e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.636 |
Method: | Least Squares | F-statistic: | 20.25 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.56e-05 |
Time: | 03:32:50 | Log-Likelihood: | -100.37 |
No. Observations: | 23 | AIC: | 206.7 |
Df Residuals: | 20 | BIC: | 210.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -307.6781 | 325.829 | -0.944 | 0.356 | -987.345 371.988 |
C(dose)[T.1] | 46.6638 | 10.418 | 4.479 | 0.000 | 24.933 68.395 |
expression | 31.4321 | 28.296 | 1.111 | 0.280 | -27.592 90.456 |
Omnibus: | 0.191 | Durbin-Watson: | 1.833 |
Prob(Omnibus): | 0.909 | Jarque-Bera (JB): | 0.395 |
Skew: | 0.098 | Prob(JB): | 0.821 |
Kurtosis: | 2.388 | Cond. No. | 898. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:32:50 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.338 |
Model: | OLS | Adj. R-squared: | 0.306 |
Method: | Least Squares | F-statistic: | 10.71 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00363 |
Time: | 03:32:50 | Log-Likelihood: | -108.36 |
No. Observations: | 23 | AIC: | 220.7 |
Df Residuals: | 21 | BIC: | 223.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1134.2499 | 370.910 | -3.058 | 0.006 | -1905.599 -362.901 |
expression | 104.5187 | 31.930 | 3.273 | 0.004 | 38.116 170.921 |
Omnibus: | 2.556 | Durbin-Watson: | 2.128 |
Prob(Omnibus): | 0.279 | Jarque-Bera (JB): | 2.166 |
Skew: | 0.668 | Prob(JB): | 0.339 |
Kurtosis: | 2.312 | Cond. No. | 739. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.018 | 0.895 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.471 |
Model: | OLS | Adj. R-squared: | 0.326 |
Method: | Least Squares | F-statistic: | 3.261 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0632 |
Time: | 03:32:50 | Log-Likelihood: | -70.528 |
No. Observations: | 15 | AIC: | 149.1 |
Df Residuals: | 11 | BIC: | 151.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -115.5390 | 445.913 | -0.259 | 0.800 | -1096.988 865.910 |
C(dose)[T.1] | 441.0547 | 592.178 | 0.745 | 0.472 | -862.321 1744.430 |
expression | 17.2904 | 42.124 | 0.410 | 0.689 | -75.424 110.005 |
expression:C(dose)[T.1] | -37.1537 | 56.091 | -0.662 | 0.521 | -160.610 86.303 |
Omnibus: | 4.498 | Durbin-Watson: | 0.924 |
Prob(Omnibus): | 0.106 | Jarque-Bera (JB): | 2.587 |
Skew: | -1.013 | Prob(JB): | 0.274 |
Kurtosis: | 3.184 | Cond. No. | 1.07e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.901 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0278 |
Time: | 03:32:50 | Log-Likelihood: | -70.822 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 106.1986 | 287.603 | 0.369 | 0.718 | -520.435 732.833 |
C(dose)[T.1] | 48.9562 | 15.828 | 3.093 | 0.009 | 14.470 83.443 |
expression | -3.6638 | 27.157 | -0.135 | 0.895 | -62.833 55.506 |
Omnibus: | 2.942 | Durbin-Watson: | 0.815 |
Prob(Omnibus): | 0.230 | Jarque-Bera (JB): | 1.937 |
Skew: | -0.869 | Prob(JB): | 0.380 |
Kurtosis: | 2.721 | Cond. No. | 391. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:32:51 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.065 |
Method: | Least Squares | F-statistic: | 0.1423 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.712 |
Time: | 03:32:51 | Log-Likelihood: | -75.218 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 231.9700 | 366.714 | 0.633 | 0.538 | -560.267 1024.207 |
expression | -13.1130 | 34.756 | -0.377 | 0.712 | -88.199 61.973 |
Omnibus: | 0.460 | Durbin-Watson: | 1.665 |
Prob(Omnibus): | 0.794 | Jarque-Bera (JB): | 0.525 |
Skew: | -0.052 | Prob(JB): | 0.769 |
Kurtosis: | 2.089 | Cond. No. | 386. |