AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.282 0.085 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.739
Model: OLS Adj. R-squared: 0.698
Method: Least Squares F-statistic: 17.95
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.99e-06
Time: 04:10:17 Log-Likelihood: -97.648
No. Observations: 23 AIC: 203.3
Df Residuals: 19 BIC: 207.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.7084 107.158 1.070 0.298 -109.576 338.993
C(dose)[T.1] -166.2562 124.756 -1.333 0.198 -427.374 94.861
expression -10.5763 18.709 -0.565 0.578 -49.735 28.583
expression:C(dose)[T.1] 37.0050 21.490 1.722 0.101 -7.973 81.983
Omnibus: 1.514 Durbin-Watson: 2.075
Prob(Omnibus): 0.469 Jarque-Bera (JB): 1.057
Skew: 0.516 Prob(JB): 0.589
Kurtosis: 2.810 Cond. No. 284.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.699
Model: OLS Adj. R-squared: 0.668
Method: Least Squares F-statistic: 23.17
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.20e-06
Time: 04:10:17 Log-Likelihood: -99.316
No. Observations: 23 AIC: 204.6
Df Residuals: 20 BIC: 208.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -45.7433 55.462 -0.825 0.419 -161.434 69.948
C(dose)[T.1] 48.1057 8.626 5.577 0.000 30.112 66.099
expression 17.4731 9.646 1.812 0.085 -2.647 37.593
Omnibus: 1.932 Durbin-Watson: 2.089
Prob(Omnibus): 0.381 Jarque-Bera (JB): 1.650
Skew: 0.605 Prob(JB): 0.438
Kurtosis: 2.493 Cond. No. 83.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:10:17 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.230
Model: OLS Adj. R-squared: 0.193
Method: Least Squares F-statistic: 6.263
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0207
Time: 04:10:17 Log-Likelihood: -110.10
No. Observations: 23 AIC: 224.2
Df Residuals: 21 BIC: 226.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -128.3290 83.375 -1.539 0.139 -301.716 45.058
expression 35.4815 14.178 2.503 0.021 5.996 64.966
Omnibus: 1.825 Durbin-Watson: 2.905
Prob(Omnibus): 0.401 Jarque-Bera (JB): 1.062
Skew: 0.134 Prob(JB): 0.588
Kurtosis: 1.982 Cond. No. 79.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.003 0.959 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.620
Model: OLS Adj. R-squared: 0.517
Method: Least Squares F-statistic: 5.995
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0113
Time: 04:10:17 Log-Likelihood: -68.034
No. Observations: 15 AIC: 144.1
Df Residuals: 11 BIC: 146.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 297.7334 143.300 2.078 0.062 -17.668 613.135
C(dose)[T.1] -423.6818 212.906 -1.990 0.072 -892.285 44.921
expression -43.8262 27.204 -1.611 0.135 -103.701 16.048
expression:C(dose)[T.1] 86.3126 38.704 2.230 0.048 1.126 171.499
Omnibus: 3.199 Durbin-Watson: 1.473
Prob(Omnibus): 0.202 Jarque-Bera (JB): 1.732
Skew: -0.831 Prob(JB): 0.421
Kurtosis: 3.075 Cond. No. 236.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.887
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 04:10:17 Log-Likelihood: -70.831
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 73.6606 117.880 0.625 0.544 -183.178 330.500
C(dose)[T.1] 49.7354 18.725 2.656 0.021 8.937 90.534
expression -1.1859 22.325 -0.053 0.959 -49.829 47.457
Omnibus: 2.721 Durbin-Watson: 0.822
Prob(Omnibus): 0.257 Jarque-Bera (JB): 1.868
Skew: -0.844 Prob(JB): 0.393
Kurtosis: 2.625 Cond. No. 86.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:10:17 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.125
Model: OLS Adj. R-squared: 0.058
Method: Least Squares F-statistic: 1.856
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.196
Time: 04:10:17 Log-Likelihood: -74.299
No. Observations: 15 AIC: 152.6
Df Residuals: 13 BIC: 154.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -76.4529 125.243 -0.610 0.552 -347.024 194.118
expression 30.9458 22.717 1.362 0.196 -18.131 80.022
Omnibus: 1.138 Durbin-Watson: 1.418
Prob(Omnibus): 0.566 Jarque-Bera (JB): 0.765
Skew: -0.522 Prob(JB): 0.682
Kurtosis: 2.633 Cond. No. 75.0