AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.008 0.929 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.698
Model: OLS Adj. R-squared: 0.650
Method: Least Squares F-statistic: 14.65
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.52e-05
Time: 04:40:08 Log-Likelihood: -99.331
No. Observations: 23 AIC: 206.7
Df Residuals: 19 BIC: 211.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 126.7492 52.531 2.413 0.026 16.802 236.697
C(dose)[T.1] -69.2070 70.396 -0.983 0.338 -216.548 78.134
expression -20.2117 14.548 -1.389 0.181 -50.660 10.237
expression:C(dose)[T.1] 33.7414 19.229 1.755 0.095 -6.506 73.989
Omnibus: 0.465 Durbin-Watson: 2.133
Prob(Omnibus): 0.793 Jarque-Bera (JB): 0.588
Skew: 0.199 Prob(JB): 0.745
Kurtosis: 2.325 Cond. No. 89.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.51
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.82e-05
Time: 04:40:08 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 57.4372 36.384 1.579 0.130 -18.458 133.332
C(dose)[T.1] 53.4331 8.833 6.049 0.000 35.008 71.858
expression -0.8996 9.996 -0.090 0.929 -21.750 19.951
Omnibus: 0.247 Durbin-Watson: 1.879
Prob(Omnibus): 0.884 Jarque-Bera (JB): 0.438
Skew: 0.018 Prob(JB): 0.803
Kurtosis: 2.325 Cond. No. 33.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:40:08 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.040
Method: Least Squares F-statistic: 0.1546
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.698
Time: 04:40:08 Log-Likelihood: -113.02
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 56.4054 59.729 0.944 0.356 -67.808 180.619
expression 6.4042 16.289 0.393 0.698 -27.471 40.280
Omnibus: 2.516 Durbin-Watson: 2.561
Prob(Omnibus): 0.284 Jarque-Bera (JB): 1.360
Skew: 0.262 Prob(JB): 0.507
Kurtosis: 1.930 Cond. No. 32.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.814 0.203 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.596
Model: OLS Adj. R-squared: 0.486
Method: Least Squares F-statistic: 5.404
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0157
Time: 04:40:08 Log-Likelihood: -68.507
No. Observations: 15 AIC: 145.0
Df Residuals: 11 BIC: 147.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 110.5441 74.743 1.479 0.167 -53.964 275.052
C(dose)[T.1] 264.4307 154.629 1.710 0.115 -75.905 604.766
expression -8.8093 15.126 -0.582 0.572 -42.102 24.483
expression:C(dose)[T.1] -46.4732 32.613 -1.425 0.182 -118.253 25.307
Omnibus: 0.503 Durbin-Watson: 0.705
Prob(Omnibus): 0.778 Jarque-Bera (JB): 0.571
Skew: -0.206 Prob(JB): 0.752
Kurtosis: 2.137 Cond. No. 131.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.521
Model: OLS Adj. R-squared: 0.441
Method: Least Squares F-statistic: 6.530
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0121
Time: 04:40:08 Log-Likelihood: -69.777
No. Observations: 15 AIC: 145.6
Df Residuals: 12 BIC: 147.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 159.4753 69.181 2.305 0.040 8.743 310.207
C(dose)[T.1] 45.0395 14.991 3.004 0.011 12.377 77.702
expression -18.8069 13.964 -1.347 0.203 -49.233 11.619
Omnibus: 2.717 Durbin-Watson: 0.861
Prob(Omnibus): 0.257 Jarque-Bera (JB): 1.458
Skew: -0.467 Prob(JB): 0.482
Kurtosis: 1.792 Cond. No. 47.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:40:08 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.161
Model: OLS Adj. R-squared: 0.096
Method: Least Squares F-statistic: 2.494
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.138
Time: 04:40:08 Log-Likelihood: -73.984
No. Observations: 15 AIC: 152.0
Df Residuals: 13 BIC: 153.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 224.7560 83.530 2.691 0.019 44.300 405.212
expression -27.4451 17.379 -1.579 0.138 -64.991 10.100
Omnibus: 2.733 Durbin-Watson: 1.706
Prob(Omnibus): 0.255 Jarque-Bera (JB): 1.085
Skew: 0.062 Prob(JB): 0.581
Kurtosis: 1.688 Cond. No. 45.0