AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.446 | 0.512 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.604 |
Method: | Least Squares | F-statistic: | 12.17 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000113 |
Time: | 05:12:41 | Log-Likelihood: | -100.77 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 5.9582 | 140.549 | 0.042 | 0.967 | -288.214 300.130 |
C(dose)[T.1] | 1.8714 | 216.738 | 0.009 | 0.993 | -451.766 455.509 |
expression | 6.4935 | 18.897 | 0.344 | 0.735 | -33.058 46.045 |
expression:C(dose)[T.1] | 7.1360 | 29.409 | 0.243 | 0.811 | -54.418 68.690 |
Omnibus: | 0.551 | Durbin-Watson: | 2.093 |
Prob(Omnibus): | 0.759 | Jarque-Bera (JB): | 0.627 |
Skew: | 0.154 | Prob(JB): | 0.731 |
Kurtosis: | 2.253 | Cond. No. | 458. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.13 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.27e-05 |
Time: | 05:12:41 | Log-Likelihood: | -100.81 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -15.9345 | 105.200 | -0.151 | 0.881 | -235.377 203.508 |
C(dose)[T.1] | 54.4164 | 8.823 | 6.168 | 0.000 | 36.012 72.821 |
expression | 9.4399 | 14.135 | 0.668 | 0.512 | -20.045 38.925 |
Omnibus: | 0.427 | Durbin-Watson: | 2.130 |
Prob(Omnibus): | 0.808 | Jarque-Bera (JB): | 0.549 |
Skew: | 0.099 | Prob(JB): | 0.760 |
Kurtosis: | 2.270 | Cond. No. | 183. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:12:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.004 |
Model: | OLS | Adj. R-squared: | -0.044 |
Method: | Least Squares | F-statistic: | 0.07987 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.780 |
Time: | 05:12:41 | Log-Likelihood: | -113.06 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 127.8728 | 170.541 | 0.750 | 0.462 | -226.786 482.532 |
expression | -6.5288 | 23.101 | -0.283 | 0.780 | -54.570 41.512 |
Omnibus: | 3.466 | Durbin-Watson: | 2.416 |
Prob(Omnibus): | 0.177 | Jarque-Bera (JB): | 1.595 |
Skew: | 0.285 | Prob(JB): | 0.450 |
Kurtosis: | 1.843 | Cond. No. | 178. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.427 | 0.255 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.533 |
Model: | OLS | Adj. R-squared: | 0.405 |
Method: | Least Squares | F-statistic: | 4.177 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0334 |
Time: | 05:12:41 | Log-Likelihood: | -69.597 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 11 | BIC: | 150.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -334.9157 | 288.387 | -1.161 | 0.270 | -969.652 299.820 |
C(dose)[T.1] | 399.8659 | 452.769 | 0.883 | 0.396 | -596.671 1396.403 |
expression | 49.4187 | 35.396 | 1.396 | 0.190 | -28.487 127.324 |
expression:C(dose)[T.1] | -43.0154 | 55.874 | -0.770 | 0.458 | -165.994 79.963 |
Omnibus: | 2.330 | Durbin-Watson: | 1.064 |
Prob(Omnibus): | 0.312 | Jarque-Bera (JB): | 1.333 |
Skew: | -0.727 | Prob(JB): | 0.514 |
Kurtosis: | 2.874 | Cond. No. | 628. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.507 |
Model: | OLS | Adj. R-squared: | 0.425 |
Method: | Least Squares | F-statistic: | 6.179 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0143 |
Time: | 05:12:41 | Log-Likelihood: | -69.990 |
No. Observations: | 15 | AIC: | 146.0 |
Df Residuals: | 12 | BIC: | 148.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -194.3735 | 219.429 | -0.886 | 0.393 | -672.468 283.721 |
C(dose)[T.1] | 51.4952 | 15.004 | 3.432 | 0.005 | 18.805 84.185 |
expression | 32.1563 | 26.919 | 1.195 | 0.255 | -26.494 90.807 |
Omnibus: | 1.353 | Durbin-Watson: | 0.905 |
Prob(Omnibus): | 0.508 | Jarque-Bera (JB): | 0.881 |
Skew: | -0.569 | Prob(JB): | 0.644 |
Kurtosis: | 2.662 | Cond. No. | 244. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:12:41 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.024 |
Model: | OLS | Adj. R-squared: | -0.051 |
Method: | Least Squares | F-statistic: | 0.3163 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.583 |
Time: | 05:12:41 | Log-Likelihood: | -75.120 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -70.8845 | 292.757 | -0.242 | 0.812 | -703.348 561.579 |
expression | 20.3064 | 36.106 | 0.562 | 0.583 | -57.697 98.310 |
Omnibus: | 2.499 | Durbin-Watson: | 1.646 |
Prob(Omnibus): | 0.287 | Jarque-Bera (JB): | 1.182 |
Skew: | 0.287 | Prob(JB): | 0.554 |
Kurtosis: | 1.750 | Cond. No. | 240. |