AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
7.028 0.015 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.746
Model: OLS Adj. R-squared: 0.705
Method: Least Squares F-statistic: 18.57
Date: Tue, 03 Dec 2024 Prob (F-statistic): 7.13e-06
Time: 11:44:21 Log-Likelihood: -97.361
No. Observations: 23 AIC: 202.7
Df Residuals: 19 BIC: 207.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 152.5342 55.882 2.730 0.013 35.572 269.497
C(dose)[T.1] 103.6126 92.475 1.120 0.276 -89.940 297.165
expression -13.7877 7.801 -1.767 0.093 -30.115 2.539
expression:C(dose)[T.1] -8.5285 13.513 -0.631 0.535 -36.811 19.754
Omnibus: 0.523 Durbin-Watson: 2.070
Prob(Omnibus): 0.770 Jarque-Bera (JB): 0.016
Skew: -0.019 Prob(JB): 0.992
Kurtosis: 3.124 Cond. No. 206.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.740
Model: OLS Adj. R-squared: 0.714
Method: Least Squares F-statistic: 28.51
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.40e-06
Time: 11:44:21 Log-Likelihood: -97.600
No. Observations: 23 AIC: 201.2
Df Residuals: 20 BIC: 204.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 172.8032 45.039 3.837 0.001 78.853 266.753
C(dose)[T.1] 45.4793 8.105 5.611 0.000 28.572 62.387
expression -16.6299 6.273 -2.651 0.015 -29.715 -3.544
Omnibus: 0.218 Durbin-Watson: 2.244
Prob(Omnibus): 0.897 Jarque-Bera (JB): 0.078
Skew: -0.120 Prob(JB): 0.962
Kurtosis: 2.846 Cond. No. 85.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:44:21 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.332
Model: OLS Adj. R-squared: 0.300
Method: Least Squares F-statistic: 10.41
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00404
Time: 11:44:21 Log-Likelihood: -108.47
No. Observations: 23 AIC: 220.9
Df Residuals: 21 BIC: 223.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 283.4392 63.403 4.470 0.000 151.586 415.293
expression -29.5016 9.142 -3.227 0.004 -48.513 -10.490
Omnibus: 0.375 Durbin-Watson: 2.499
Prob(Omnibus): 0.829 Jarque-Bera (JB): 0.526
Skew: 0.170 Prob(JB): 0.769
Kurtosis: 2.342 Cond. No. 76.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.054 0.819 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.768
Model: OLS Adj. R-squared: 0.705
Method: Least Squares F-statistic: 12.16
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.000812
Time: 11:44:21 Log-Likelihood: -64.331
No. Observations: 15 AIC: 136.7
Df Residuals: 11 BIC: 139.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -140.2335 83.436 -1.681 0.121 -323.875 43.408
C(dose)[T.1] 615.9040 146.471 4.205 0.001 293.523 938.285
expression 30.8149 12.327 2.500 0.030 3.683 57.947
expression:C(dose)[T.1] -83.7065 21.571 -3.881 0.003 -131.184 -36.230
Omnibus: 1.105 Durbin-Watson: 1.297
Prob(Omnibus): 0.576 Jarque-Bera (JB): 0.881
Skew: -0.528 Prob(JB): 0.644
Kurtosis: 2.455 Cond. No. 236.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.934
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0273
Time: 11:44:21 Log-Likelihood: -70.799
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 43.9890 101.111 0.435 0.671 -176.312 264.290
C(dose)[T.1] 49.0249 15.721 3.118 0.009 14.771 83.279
expression 3.4782 14.907 0.233 0.819 -29.001 35.958
Omnibus: 2.815 Durbin-Watson: 0.824
Prob(Omnibus): 0.245 Jarque-Bera (JB): 1.849
Skew: -0.848 Prob(JB): 0.397
Kurtosis: 2.715 Cond. No. 89.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:44:21 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.070
Method: Least Squares F-statistic: 0.08620
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.774
Time: 11:44:21 Log-Likelihood: -75.250
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 55.4312 130.621 0.424 0.678 -226.758 337.620
expression 5.6517 19.249 0.294 0.774 -35.934 47.237
Omnibus: 1.741 Durbin-Watson: 1.639
Prob(Omnibus): 0.419 Jarque-Bera (JB): 0.964
Skew: 0.215 Prob(JB): 0.618
Kurtosis: 1.835 Cond. No. 89.4