AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.164 0.689 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.718
Model: OLS Adj. R-squared: 0.673
Method: Least Squares F-statistic: 16.10
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.89e-05
Time: 04:32:55 Log-Likelihood: -98.561
No. Observations: 23 AIC: 205.1
Df Residuals: 19 BIC: 209.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 189.6077 80.163 2.365 0.029 21.825 357.390
C(dose)[T.1] -136.4071 90.260 -1.511 0.147 -325.323 52.508
expression -35.5228 20.980 -1.693 0.107 -79.435 8.389
expression:C(dose)[T.1] 49.1970 23.387 2.104 0.049 0.247 98.147
Omnibus: 0.396 Durbin-Watson: 1.774
Prob(Omnibus): 0.820 Jarque-Bera (JB): 0.360
Skew: 0.262 Prob(JB): 0.835
Kurtosis: 2.682 Cond. No. 139.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.73
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.61e-05
Time: 04:32:55 Log-Likelihood: -100.97
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.7005 38.716 1.000 0.329 -42.059 119.460
C(dose)[T.1] 52.6755 8.885 5.929 0.000 34.141 71.209
expression 4.0686 10.033 0.406 0.689 -16.860 24.997
Omnibus: 0.347 Durbin-Watson: 1.957
Prob(Omnibus): 0.841 Jarque-Bera (JB): 0.499
Skew: 0.052 Prob(JB): 0.779
Kurtosis: 2.286 Cond. No. 37.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:32:55 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.040
Model: OLS Adj. R-squared: -0.005
Method: Least Squares F-statistic: 0.8799
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.359
Time: 04:32:55 Log-Likelihood: -112.63
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 21.4099 62.561 0.342 0.736 -108.693 151.513
expression 14.9914 15.982 0.938 0.359 -18.245 48.228
Omnibus: 1.531 Durbin-Watson: 2.584
Prob(Omnibus): 0.465 Jarque-Bera (JB): 0.976
Skew: 0.124 Prob(JB): 0.614
Kurtosis: 2.022 Cond. No. 36.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.000 0.985 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.299
Method: Least Squares F-statistic: 2.994
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0772
Time: 04:32:55 Log-Likelihood: -70.823
No. Observations: 15 AIC: 149.6
Df Residuals: 11 BIC: 152.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.6812 182.288 0.267 0.794 -352.533 449.895
C(dose)[T.1] 76.7312 232.681 0.330 0.748 -435.397 588.859
expression 5.3179 51.596 0.103 0.920 -108.244 118.880
expression:C(dose)[T.1] -7.9264 67.035 -0.118 0.908 -155.470 139.617
Omnibus: 2.778 Durbin-Watson: 0.826
Prob(Omnibus): 0.249 Jarque-Bera (JB): 1.914
Skew: -0.854 Prob(JB): 0.384
Kurtosis: 2.621 Cond. No. 147.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.885
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 04:32:55 Log-Likelihood: -70.833
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 65.2352 111.844 0.583 0.571 -178.452 308.923
C(dose)[T.1] 49.2939 16.497 2.988 0.011 13.350 85.238
expression 0.6222 31.558 0.020 0.985 -68.136 69.381
Omnibus: 2.755 Durbin-Watson: 0.814
Prob(Omnibus): 0.252 Jarque-Bera (JB): 1.888
Skew: -0.849 Prob(JB): 0.389
Kurtosis: 2.631 Cond. No. 53.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:32:55 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.039
Model: OLS Adj. R-squared: -0.035
Method: Least Squares F-statistic: 0.5229
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.482
Time: 04:32:55 Log-Likelihood: -75.004
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 188.7443 131.863 1.431 0.176 -96.128 473.616
expression -27.6242 38.202 -0.723 0.482 -110.155 54.907
Omnibus: 1.175 Durbin-Watson: 1.342
Prob(Omnibus): 0.556 Jarque-Bera (JB): 0.768
Skew: 0.097 Prob(JB): 0.681
Kurtosis: 1.908 Cond. No. 49.5