AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.123 | 0.730 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.34 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000104 |
Time: | 05:12:01 | Log-Likelihood: | -100.67 |
No. Observations: | 23 | AIC: | 209.3 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 65.9028 | 38.257 | 1.723 | 0.101 | -14.170 145.976 |
C(dose)[T.1] | 14.1122 | 53.303 | 0.265 | 0.794 | -97.452 125.676 |
expression | -2.6237 | 8.473 | -0.310 | 0.760 | -20.358 15.110 |
expression:C(dose)[T.1] | 8.4692 | 11.491 | 0.737 | 0.470 | -15.583 32.521 |
Omnibus: | 0.073 | Durbin-Watson: | 1.834 |
Prob(Omnibus): | 0.964 | Jarque-Bera (JB): | 0.057 |
Skew: | -0.034 | Prob(JB): | 0.972 |
Kurtosis: | 2.767 | Cond. No. | 77.4 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.67 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.67e-05 |
Time: | 05:12:01 | Log-Likelihood: | -100.99 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.3812 | 25.934 | 1.750 | 0.095 | -8.716 99.478 |
C(dose)[T.1] | 52.8371 | 8.859 | 5.964 | 0.000 | 34.357 71.317 |
expression | 1.9804 | 5.658 | 0.350 | 0.730 | -9.822 13.783 |
Omnibus: | 0.031 | Durbin-Watson: | 1.983 |
Prob(Omnibus): | 0.985 | Jarque-Bera (JB): | 0.231 |
Skew: | 0.048 | Prob(JB): | 0.891 |
Kurtosis: | 2.518 | Cond. No. | 29.0 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:12:01 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.031 |
Model: | OLS | Adj. R-squared: | -0.015 |
Method: | Least Squares | F-statistic: | 0.6677 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.423 |
Time: | 05:12:01 | Log-Likelihood: | -112.74 |
No. Observations: | 23 | AIC: | 229.5 |
Df Residuals: | 21 | BIC: | 231.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 45.7372 | 42.187 | 1.084 | 0.291 | -41.996 133.470 |
expression | 7.4226 | 9.084 | 0.817 | 0.423 | -11.468 26.313 |
Omnibus: | 2.844 | Durbin-Watson: | 2.624 |
Prob(Omnibus): | 0.241 | Jarque-Bera (JB): | 1.364 |
Skew: | 0.207 | Prob(JB): | 0.506 |
Kurtosis: | 1.881 | Cond. No. | 28.8 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.874 | 0.032 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.630 |
Model: | OLS | Adj. R-squared: | 0.529 |
Method: | Least Squares | F-statistic: | 6.242 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00987 |
Time: | 05:12:01 | Log-Likelihood: | -67.844 |
No. Observations: | 15 | AIC: | 143.7 |
Df Residuals: | 11 | BIC: | 146.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 212.6049 | 81.726 | 2.601 | 0.025 | 32.728 392.482 |
C(dose)[T.1] | 41.9545 | 124.402 | 0.337 | 0.742 | -231.852 315.761 |
expression | -24.5356 | 13.712 | -1.789 | 0.101 | -54.715 5.644 |
expression:C(dose)[T.1] | 0.5952 | 21.224 | 0.028 | 0.978 | -46.118 47.309 |
Omnibus: | 11.363 | Durbin-Watson: | 1.099 |
Prob(Omnibus): | 0.003 | Jarque-Bera (JB): | 7.470 |
Skew: | -1.465 | Prob(JB): | 0.0239 |
Kurtosis: | 4.834 | Cond. No. | 143. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.630 |
Model: | OLS | Adj. R-squared: | 0.568 |
Method: | Least Squares | F-statistic: | 10.21 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00257 |
Time: | 05:12:01 | Log-Likelihood: | -67.845 |
No. Observations: | 15 | AIC: | 141.7 |
Df Residuals: | 12 | BIC: | 143.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 211.1350 | 60.036 | 3.517 | 0.004 | 80.327 341.943 |
C(dose)[T.1] | 45.4223 | 12.990 | 3.497 | 0.004 | 17.119 73.725 |
expression | -24.2872 | 10.021 | -2.424 | 0.032 | -46.121 -2.454 |
Omnibus: | 11.411 | Durbin-Watson: | 1.095 |
Prob(Omnibus): | 0.003 | Jarque-Bera (JB): | 7.517 |
Skew: | -1.468 | Prob(JB): | 0.0233 |
Kurtosis: | 4.845 | Cond. No. | 56.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:12:01 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.253 |
Model: | OLS | Adj. R-squared: | 0.195 |
Method: | Least Squares | F-statistic: | 4.400 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0561 |
Time: | 05:12:01 | Log-Likelihood: | -73.114 |
No. Observations: | 15 | AIC: | 150.2 |
Df Residuals: | 13 | BIC: | 151.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 259.8657 | 79.719 | 3.260 | 0.006 | 87.643 432.088 |
expression | -28.4876 | 13.581 | -2.098 | 0.056 | -57.828 0.853 |
Omnibus: | 4.834 | Durbin-Watson: | 2.308 |
Prob(Omnibus): | 0.089 | Jarque-Bera (JB): | 1.424 |
Skew: | 0.163 | Prob(JB): | 0.491 |
Kurtosis: | 1.526 | Cond. No. | 54.8 |