AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.005 0.946 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.665
Model: OLS Adj. R-squared: 0.612
Method: Least Squares F-statistic: 12.57
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.31e-05
Time: 04:44:40 Log-Likelihood: -100.53
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 73.4747 26.982 2.723 0.014 17.000 129.950
C(dose)[T.1] 18.6756 37.775 0.494 0.627 -60.388 97.740
expression -4.8356 6.598 -0.733 0.473 -18.645 8.974
expression:C(dose)[T.1] 8.5830 9.086 0.945 0.357 -10.434 27.600
Omnibus: 2.757 Durbin-Watson: 2.205
Prob(Omnibus): 0.252 Jarque-Bera (JB): 1.237
Skew: -0.045 Prob(JB): 0.539
Kurtosis: 1.867 Cond. No. 49.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 04:44:40 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 55.4413 19.018 2.915 0.009 15.771 95.111
C(dose)[T.1] 53.3755 8.787 6.075 0.000 35.047 71.704
expression -0.3095 4.524 -0.068 0.946 -9.746 9.127
Omnibus: 0.262 Durbin-Watson: 1.905
Prob(Omnibus): 0.877 Jarque-Bera (JB): 0.447
Skew: 0.043 Prob(JB): 0.800
Kurtosis: 2.322 Cond. No. 19.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:44:40 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.03772
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.848
Time: 04:44:40 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 73.8814 30.903 2.391 0.026 9.615 138.147
expression 1.4433 7.432 0.194 0.848 -14.012 16.898
Omnibus: 3.585 Durbin-Watson: 2.473
Prob(Omnibus): 0.167 Jarque-Bera (JB): 1.608
Skew: 0.279 Prob(JB): 0.447
Kurtosis: 1.831 Cond. No. 18.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.378 0.058 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.687
Model: OLS Adj. R-squared: 0.602
Method: Least Squares F-statistic: 8.057
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00405
Time: 04:44:40 Log-Likelihood: -66.582
No. Observations: 15 AIC: 141.2
Df Residuals: 11 BIC: 144.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 120.6042 41.688 2.893 0.015 28.849 212.359
C(dose)[T.1] 188.4379 85.742 2.198 0.050 -0.278 377.154
expression -9.4834 7.258 -1.307 0.218 -25.457 6.491
expression:C(dose)[T.1] -30.7418 17.172 -1.790 0.101 -68.537 7.054
Omnibus: 1.205 Durbin-Watson: 1.471
Prob(Omnibus): 0.547 Jarque-Bera (JB): 0.906
Skew: -0.330 Prob(JB): 0.636
Kurtosis: 1.992 Cond. No. 87.6

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.596
Model: OLS Adj. R-squared: 0.529
Method: Least Squares F-statistic: 8.856
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00434
Time: 04:44:40 Log-Likelihood: -68.500
No. Observations: 15 AIC: 143.0
Df Residuals: 12 BIC: 145.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 151.3953 41.316 3.664 0.003 61.375 241.416
C(dose)[T.1] 36.8609 14.706 2.507 0.028 4.820 68.902
expression -14.9747 7.156 -2.092 0.058 -30.567 0.618
Omnibus: 2.166 Durbin-Watson: 1.831
Prob(Omnibus): 0.339 Jarque-Bera (JB): 1.670
Skew: -0.708 Prob(JB): 0.434
Kurtosis: 2.184 Cond. No. 34.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:44:40 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.385
Model: OLS Adj. R-squared: 0.337
Method: Least Squares F-statistic: 8.127
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0136
Time: 04:44:40 Log-Likelihood: -71.658
No. Observations: 15 AIC: 147.3
Df Residuals: 13 BIC: 148.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 208.2160 40.964 5.083 0.000 119.719 296.713
expression -22.1655 7.775 -2.851 0.014 -38.962 -5.368
Omnibus: 1.614 Durbin-Watson: 2.542
Prob(Omnibus): 0.446 Jarque-Bera (JB): 0.905
Skew: -0.166 Prob(JB): 0.636
Kurtosis: 1.843 Cond. No. 28.0