AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.538 0.472 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 12.37
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000103
Time: 04:19:26 Log-Likelihood: -100.65
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 45.3280 20.307 2.232 0.038 2.824 87.832
C(dose)[T.1] 20.3710 64.240 0.317 0.755 -114.084 154.826
expression 2.3710 5.170 0.459 0.652 -8.451 13.193
expression:C(dose)[T.1] 4.7985 11.600 0.414 0.684 -19.481 29.078
Omnibus: 0.000 Durbin-Watson: 1.826
Prob(Omnibus): 1.000 Jarque-Bera (JB): 0.164
Skew: 0.004 Prob(JB): 0.921
Kurtosis: 2.587 Cond. No. 92.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.26
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.17e-05
Time: 04:19:26 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 41.7575 17.997 2.320 0.031 4.217 79.298
C(dose)[T.1] 46.3849 12.834 3.614 0.002 19.614 73.156
expression 3.3243 4.532 0.734 0.472 -6.128 12.777
Omnibus: 0.037 Durbin-Watson: 1.774
Prob(Omnibus): 0.981 Jarque-Bera (JB): 0.192
Skew: 0.081 Prob(JB): 0.909
Kurtosis: 2.583 Cond. No. 23.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:19:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.435
Model: OLS Adj. R-squared: 0.408
Method: Least Squares F-statistic: 16.17
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000617
Time: 04:19:26 Log-Likelihood: -106.54
No. Observations: 23 AIC: 217.1
Df Residuals: 21 BIC: 219.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 6.5474 18.987 0.345 0.734 -32.938 46.033
expression 15.4186 3.834 4.021 0.001 7.445 23.392
Omnibus: 0.840 Durbin-Watson: 1.720
Prob(Omnibus): 0.657 Jarque-Bera (JB): 0.719
Skew: 0.000 Prob(JB): 0.698
Kurtosis: 2.134 Cond. No. 18.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.543 0.476 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.589
Model: OLS Adj. R-squared: 0.477
Method: Least Squares F-statistic: 5.252
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0171
Time: 04:19:26 Log-Likelihood: -68.633
No. Observations: 15 AIC: 145.3
Df Residuals: 11 BIC: 148.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -55.4312 140.916 -0.393 0.702 -365.586 254.724
C(dose)[T.1] 378.5049 185.018 2.046 0.065 -28.716 785.726
expression 46.1361 52.773 0.874 0.401 -70.017 162.289
expression:C(dose)[T.1] -119.4260 67.710 -1.764 0.105 -268.456 29.604
Omnibus: 0.286 Durbin-Watson: 0.820
Prob(Omnibus): 0.867 Jarque-Bera (JB): 0.371
Skew: -0.263 Prob(JB): 0.831
Kurtosis: 2.437 Cond. No. 114.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.473
Model: OLS Adj. R-squared: 0.385
Method: Least Squares F-statistic: 5.377
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0215
Time: 04:19:26 Log-Likelihood: -70.501
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 137.7590 96.139 1.433 0.177 -71.711 347.229
C(dose)[T.1] 53.2609 16.354 3.257 0.007 17.628 88.894
expression -26.4104 35.854 -0.737 0.476 -104.530 51.710
Omnibus: 1.874 Durbin-Watson: 0.933
Prob(Omnibus): 0.392 Jarque-Bera (JB): 1.306
Skew: -0.692 Prob(JB): 0.520
Kurtosis: 2.580 Cond. No. 39.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:19:26 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.070
Method: Least Squares F-statistic: 0.08513
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.775
Time: 04:19:26 Log-Likelihood: -75.251
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.0198 122.597 0.473 0.644 -206.834 322.874
expression 12.9858 44.508 0.292 0.775 -83.168 109.140
Omnibus: 0.907 Durbin-Watson: 1.575
Prob(Omnibus): 0.635 Jarque-Bera (JB): 0.693
Skew: 0.106 Prob(JB): 0.707
Kurtosis: 1.968 Cond. No. 37.7