AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.446 | 0.243 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.677 |
Model: | OLS | Adj. R-squared: | 0.626 |
Method: | Least Squares | F-statistic: | 13.28 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.58e-05 |
Time: | 05:03:16 | Log-Likelihood: | -100.10 |
No. Observations: | 23 | AIC: | 208.2 |
Df Residuals: | 19 | BIC: | 212.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -255.7916 | 252.022 | -1.015 | 0.323 | -783.279 271.696 |
C(dose)[T.1] | 250.7065 | 392.352 | 0.639 | 0.530 | -570.496 1071.910 |
expression | 32.9739 | 26.799 | 1.230 | 0.234 | -23.118 89.066 |
expression:C(dose)[T.1] | -21.1684 | 41.367 | -0.512 | 0.615 | -107.751 65.414 |
Omnibus: | 0.515 | Durbin-Watson: | 2.107 |
Prob(Omnibus): | 0.773 | Jarque-Bera (JB): | 0.583 |
Skew: | 0.012 | Prob(JB): | 0.747 |
Kurtosis: | 2.220 | Cond. No. | 1.09e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.673 |
Model: | OLS | Adj. R-squared: | 0.640 |
Method: | Least Squares | F-statistic: | 20.55 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.41e-05 |
Time: | 05:03:16 | Log-Likelihood: | -100.26 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 20 | BIC: | 209.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -172.2659 | 188.446 | -0.914 | 0.372 | -565.356 220.825 |
C(dose)[T.1] | 49.9854 | 8.916 | 5.606 | 0.000 | 31.387 68.584 |
expression | 24.0895 | 20.035 | 1.202 | 0.243 | -17.702 65.881 |
Omnibus: | 0.400 | Durbin-Watson: | 2.148 |
Prob(Omnibus): | 0.819 | Jarque-Bera (JB): | 0.528 |
Skew: | 0.052 | Prob(JB): | 0.768 |
Kurtosis: | 2.265 | Cond. No. | 427. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:03:16 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.158 |
Model: | OLS | Adj. R-squared: | 0.118 |
Method: | Least Squares | F-statistic: | 3.952 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0600 |
Time: | 05:03:16 | Log-Likelihood: | -111.12 |
No. Observations: | 23 | AIC: | 226.2 |
Df Residuals: | 21 | BIC: | 228.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -480.8405 | 282.046 | -1.705 | 0.103 | -1067.387 105.706 |
expression | 59.2061 | 29.781 | 1.988 | 0.060 | -2.728 121.140 |
Omnibus: | 1.929 | Durbin-Watson: | 2.608 |
Prob(Omnibus): | 0.381 | Jarque-Bera (JB): | 1.331 |
Skew: | 0.350 | Prob(JB): | 0.514 |
Kurtosis: | 2.052 | Cond. No. | 408. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.535 | 0.478 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.497 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 3.621 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0488 |
Time: | 05:03:16 | Log-Likelihood: | -70.149 |
No. Observations: | 15 | AIC: | 148.3 |
Df Residuals: | 11 | BIC: | 151.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -196.3245 | 546.744 | -0.359 | 0.726 | -1399.699 1007.050 |
C(dose)[T.1] | 470.7370 | 573.998 | 0.820 | 0.430 | -792.625 1734.099 |
expression | 30.9771 | 64.199 | 0.483 | 0.639 | -110.325 172.279 |
expression:C(dose)[T.1] | -49.2986 | 67.319 | -0.732 | 0.479 | -197.467 98.870 |
Omnibus: | 2.616 | Durbin-Watson: | 1.085 |
Prob(Omnibus): | 0.270 | Jarque-Bera (JB): | 1.436 |
Skew: | -0.758 | Prob(JB): | 0.488 |
Kurtosis: | 2.965 | Cond. No. | 1.01e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.472 |
Model: | OLS | Adj. R-squared: | 0.384 |
Method: | Least Squares | F-statistic: | 5.370 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0216 |
Time: | 05:03:16 | Log-Likelihood: | -70.506 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 185.4249 | 161.654 | 1.147 | 0.274 | -166.789 537.639 |
C(dose)[T.1] | 50.5505 | 15.511 | 3.259 | 0.007 | 16.756 84.345 |
expression | -13.8584 | 18.940 | -0.732 | 0.478 | -55.125 27.408 |
Omnibus: | 2.101 | Durbin-Watson: | 0.851 |
Prob(Omnibus): | 0.350 | Jarque-Bera (JB): | 1.327 |
Skew: | -0.716 | Prob(JB): | 0.515 |
Kurtosis: | 2.727 | Cond. No. | 183. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:03:16 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.005 |
Model: | OLS | Adj. R-squared: | -0.071 |
Method: | Least Squares | F-statistic: | 0.06853 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.798 |
Time: | 05:03:16 | Log-Likelihood: | -75.261 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 149.2956 | 212.742 | 0.702 | 0.495 | -310.305 608.896 |
expression | -6.4937 | 24.806 | -0.262 | 0.798 | -60.083 47.096 |
Omnibus: | 0.391 | Durbin-Watson: | 1.637 |
Prob(Omnibus): | 0.822 | Jarque-Bera (JB): | 0.494 |
Skew: | 0.029 | Prob(JB): | 0.781 |
Kurtosis: | 2.113 | Cond. No. | 182. |