AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.039 0.846 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.606
Method: Least Squares F-statistic: 12.26
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000108
Time: 04:40:27 Log-Likelihood: -100.72
No. Observations: 23 AIC: 209.4
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 37.7132 45.791 0.824 0.420 -58.128 133.554
C(dose)[T.1] 101.3923 66.133 1.533 0.142 -37.026 239.811
expression 4.5698 12.572 0.364 0.720 -21.743 30.883
expression:C(dose)[T.1] -13.4470 18.301 -0.735 0.471 -51.752 24.858
Omnibus: 0.077 Durbin-Watson: 1.749
Prob(Omnibus): 0.962 Jarque-Bera (JB): 0.188
Skew: -0.116 Prob(JB): 0.910
Kurtosis: 2.623 Cond. No. 74.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.55
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.78e-05
Time: 04:40:27 Log-Likelihood: -101.04
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 60.6165 33.155 1.828 0.082 -8.543 129.776
C(dose)[T.1] 53.2405 8.775 6.067 0.000 34.936 71.545
expression -1.7753 9.030 -0.197 0.846 -20.613 17.062
Omnibus: 0.142 Durbin-Watson: 1.869
Prob(Omnibus): 0.932 Jarque-Bera (JB): 0.361
Skew: 0.033 Prob(JB): 0.835
Kurtosis: 2.390 Cond. No. 29.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:40:27 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.042
Method: Least Squares F-statistic: 0.1066
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.747
Time: 04:40:27 Log-Likelihood: -113.05
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 97.0715 53.629 1.810 0.085 -14.456 208.599
expression -4.8427 14.830 -0.327 0.747 -35.683 25.998
Omnibus: 3.506 Durbin-Watson: 2.450
Prob(Omnibus): 0.173 Jarque-Bera (JB): 1.535
Skew: 0.239 Prob(JB): 0.464
Kurtosis: 1.828 Cond. No. 29.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.895 0.363 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.508
Model: OLS Adj. R-squared: 0.373
Method: Least Squares F-statistic: 3.780
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0437
Time: 04:40:27 Log-Likelihood: -69.986
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 159.3533 87.139 1.829 0.095 -32.439 351.146
C(dose)[T.1] -17.2642 106.095 -0.163 0.874 -250.779 216.250
expression -23.6639 22.241 -1.064 0.310 -72.616 25.288
expression:C(dose)[T.1] 17.7601 26.182 0.678 0.512 -39.867 75.387
Omnibus: 1.592 Durbin-Watson: 1.284
Prob(Omnibus): 0.451 Jarque-Bera (JB): 1.220
Skew: -0.638 Prob(JB): 0.543
Kurtosis: 2.431 Cond. No. 89.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.487
Model: OLS Adj. R-squared: 0.402
Method: Least Squares F-statistic: 5.696
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0182
Time: 04:40:27 Log-Likelihood: -70.294
No. Observations: 15 AIC: 146.6
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 109.5693 45.908 2.387 0.034 9.544 209.595
C(dose)[T.1] 53.8455 15.959 3.374 0.006 19.073 88.618
expression -10.8482 11.468 -0.946 0.363 -35.835 14.139
Omnibus: 1.483 Durbin-Watson: 1.049
Prob(Omnibus): 0.476 Jarque-Bera (JB): 1.205
Skew: -0.596 Prob(JB): 0.547
Kurtosis: 2.288 Cond. No. 27.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:40:27 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.005320
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.943
Time: 04:40:27 Log-Likelihood: -75.297
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 89.2767 61.040 1.463 0.167 -42.591 221.145
expression 1.0673 14.633 0.073 0.943 -30.546 32.680
Omnibus: 0.474 Durbin-Watson: 1.589
Prob(Omnibus): 0.789 Jarque-Bera (JB): 0.530
Skew: 0.029 Prob(JB): 0.767
Kurtosis: 2.081 Cond. No. 26.5