AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.044 0.835 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.599
Method: Least Squares F-statistic: 11.97
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000125
Time: 04:44:26 Log-Likelihood: -100.90
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.4525 55.882 0.795 0.436 -72.509 161.415
C(dose)[T.1] 92.0817 81.935 1.124 0.275 -79.410 263.573
expression 1.4734 8.388 0.176 0.862 -16.083 19.029
expression:C(dose)[T.1] -5.7971 12.219 -0.474 0.641 -31.372 19.778
Omnibus: 0.960 Durbin-Watson: 1.832
Prob(Omnibus): 0.619 Jarque-Bera (JB): 0.809
Skew: 0.162 Prob(JB): 0.667
Kurtosis: 2.140 Cond. No. 161.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.56
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.77e-05
Time: 04:44:26 Log-Likelihood: -101.04
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.5403 40.057 1.561 0.134 -21.017 146.098
C(dose)[T.1] 53.4418 8.774 6.091 0.000 35.139 71.745
expression -1.2583 5.980 -0.210 0.835 -13.733 11.216
Omnibus: 0.535 Durbin-Watson: 1.856
Prob(Omnibus): 0.765 Jarque-Bera (JB): 0.605
Skew: 0.102 Prob(JB): 0.739
Kurtosis: 2.232 Cond. No. 62.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:44:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.006721
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.935
Time: 04:44:26 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 74.3413 65.973 1.127 0.273 -62.858 211.540
expression 0.8071 9.845 0.082 0.935 -19.666 21.281
Omnibus: 3.337 Durbin-Watson: 2.479
Prob(Omnibus): 0.189 Jarque-Bera (JB): 1.575
Skew: 0.288 Prob(JB): 0.455
Kurtosis: 1.855 Cond. No. 62.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.119 0.065 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.626
Model: OLS Adj. R-squared: 0.524
Method: Least Squares F-statistic: 6.144
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0104
Time: 04:44:26 Log-Likelihood: -67.918
No. Observations: 15 AIC: 143.8
Df Residuals: 11 BIC: 146.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.2447 61.465 1.908 0.083 -18.038 252.528
C(dose)[T.1] 139.9136 90.576 1.545 0.151 -59.443 339.270
expression -7.8213 9.524 -0.821 0.429 -28.785 13.142
expression:C(dose)[T.1] -14.8012 14.255 -1.038 0.321 -46.175 16.573
Omnibus: 0.362 Durbin-Watson: 1.118
Prob(Omnibus): 0.834 Jarque-Bera (JB): 0.467
Skew: -0.280 Prob(JB): 0.792
Kurtosis: 2.341 Cond. No. 113.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.590
Model: OLS Adj. R-squared: 0.521
Method: Least Squares F-statistic: 8.621
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00478
Time: 04:44:26 Log-Likelihood: -68.620
No. Observations: 15 AIC: 143.2
Df Residuals: 12 BIC: 145.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 159.3330 46.355 3.437 0.005 58.334 260.332
C(dose)[T.1] 46.9280 13.626 3.444 0.005 17.239 76.617
expression -14.4292 7.109 -2.030 0.065 -29.919 1.061
Omnibus: 0.637 Durbin-Watson: 1.137
Prob(Omnibus): 0.727 Jarque-Bera (JB): 0.626
Skew: -0.190 Prob(JB): 0.731
Kurtosis: 2.075 Cond. No. 44.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:44:26 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.184
Model: OLS Adj. R-squared: 0.121
Method: Least Squares F-statistic: 2.932
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.111
Time: 04:44:26 Log-Likelihood: -73.775
No. Observations: 15 AIC: 151.5
Df Residuals: 13 BIC: 153.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 196.9841 61.030 3.228 0.007 65.138 328.831
expression -16.4375 9.599 -1.712 0.111 -37.175 4.300
Omnibus: 3.276 Durbin-Watson: 1.865
Prob(Omnibus): 0.194 Jarque-Bera (JB): 1.195
Skew: 0.128 Prob(JB): 0.550
Kurtosis: 1.641 Cond. No. 43.3