AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
6.551 | 0.019 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.736 |
Model: | OLS | Adj. R-squared: | 0.694 |
Method: | Least Squares | F-statistic: | 17.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.02e-05 |
Time: | 04:46:29 | Log-Likelihood: | -97.804 |
No. Observations: | 23 | AIC: | 203.6 |
Df Residuals: | 19 | BIC: | 208.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 328.1119 | 217.903 | 1.506 | 0.149 | -127.964 784.187 |
C(dose)[T.1] | 46.3409 | 250.713 | 0.185 | 0.855 | -478.407 571.089 |
expression | -35.4968 | 28.231 | -1.257 | 0.224 | -94.584 23.591 |
expression:C(dose)[T.1] | -0.3165 | 32.760 | -0.010 | 0.992 | -68.884 68.251 |
Omnibus: | 0.182 | Durbin-Watson: | 1.954 |
Prob(Omnibus): | 0.913 | Jarque-Bera (JB): | 0.319 |
Skew: | -0.177 | Prob(JB): | 0.853 |
Kurtosis: | 2.545 | Cond. No. | 716. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.736 |
Model: | OLS | Adj. R-squared: | 0.709 |
Method: | Least Squares | F-statistic: | 27.83 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.67e-06 |
Time: | 04:46:29 | Log-Likelihood: | -97.804 |
No. Observations: | 23 | AIC: | 201.6 |
Df Residuals: | 20 | BIC: | 205.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 329.9255 | 107.848 | 3.059 | 0.006 | 104.958 554.893 |
C(dose)[T.1] | 43.9202 | 8.454 | 5.195 | 0.000 | 26.286 61.555 |
expression | -35.7318 | 13.960 | -2.560 | 0.019 | -64.852 -6.612 |
Omnibus: | 0.186 | Durbin-Watson: | 1.953 |
Prob(Omnibus): | 0.911 | Jarque-Bera (JB): | 0.324 |
Skew: | -0.178 | Prob(JB): | 0.851 |
Kurtosis: | 2.541 | Cond. No. | 220. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:46:29 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.379 |
Model: | OLS | Adj. R-squared: | 0.349 |
Method: | Least Squares | F-statistic: | 12.81 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00177 |
Time: | 04:46:29 | Log-Likelihood: | -107.63 |
No. Observations: | 23 | AIC: | 219.3 |
Df Residuals: | 21 | BIC: | 221.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 590.5007 | 142.820 | 4.135 | 0.000 | 293.491 887.510 |
expression | -67.2947 | 18.801 | -3.579 | 0.002 | -106.394 -28.195 |
Omnibus: | 0.322 | Durbin-Watson: | 2.194 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.489 |
Skew: | 0.122 | Prob(JB): | 0.783 |
Kurtosis: | 2.328 | Cond. No. | 194. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.302 | 0.592 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.497 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 3.618 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0489 |
Time: | 04:46:29 | Log-Likelihood: | -70.151 |
No. Observations: | 15 | AIC: | 148.3 |
Df Residuals: | 11 | BIC: | 151.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 495.7432 | 422.728 | 1.173 | 0.266 | -434.674 1426.161 |
C(dose)[T.1] | -427.8957 | 549.934 | -0.778 | 0.453 | -1638.292 782.501 |
expression | -52.6270 | 51.921 | -1.014 | 0.333 | -166.905 61.651 |
expression:C(dose)[T.1] | 58.6560 | 67.708 | 0.866 | 0.405 | -90.368 207.680 |
Omnibus: | 2.308 | Durbin-Watson: | 0.941 |
Prob(Omnibus): | 0.315 | Jarque-Bera (JB): | 1.440 |
Skew: | -0.749 | Prob(JB): | 0.487 |
Kurtosis: | 2.759 | Cond. No. | 799. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.462 |
Model: | OLS | Adj. R-squared: | 0.373 |
Method: | Least Squares | F-statistic: | 5.159 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0242 |
Time: | 04:46:29 | Log-Likelihood: | -70.646 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 12 | BIC: | 149.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 215.0164 | 268.625 | 0.800 | 0.439 | -370.267 800.300 |
C(dose)[T.1] | 48.3225 | 15.626 | 3.092 | 0.009 | 14.276 82.369 |
expression | -18.1341 | 32.976 | -0.550 | 0.592 | -89.984 53.715 |
Omnibus: | 2.113 | Durbin-Watson: | 0.905 |
Prob(Omnibus): | 0.348 | Jarque-Bera (JB): | 1.640 |
Skew: | -0.718 | Prob(JB): | 0.440 |
Kurtosis: | 2.250 | Cond. No. | 286. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:46:29 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.034 |
Model: | OLS | Adj. R-squared: | -0.040 |
Method: | Least Squares | F-statistic: | 0.4552 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.512 |
Time: | 04:46:29 | Log-Likelihood: | -75.042 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 324.9337 | 342.922 | 0.948 | 0.361 | -415.905 1065.772 |
expression | -28.5058 | 42.250 | -0.675 | 0.512 | -119.782 62.771 |
Omnibus: | 2.139 | Durbin-Watson: | 1.655 |
Prob(Omnibus): | 0.343 | Jarque-Bera (JB): | 1.096 |
Skew: | 0.273 | Prob(JB): | 0.578 |
Kurtosis: | 1.793 | Cond. No. | 283. |