AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.088 0.770 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.606
Method: Least Squares F-statistic: 12.26
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000108
Time: 04:56:28 Log-Likelihood: -100.72
No. Observations: 23 AIC: 209.4
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.4506 66.782 1.175 0.255 -61.326 218.227
C(dose)[T.1] -4.9545 84.344 -0.059 0.954 -181.488 171.579
expression -3.9214 10.757 -0.365 0.719 -26.436 18.593
expression:C(dose)[T.1] 9.6509 13.773 0.701 0.492 -19.177 38.478
Omnibus: 0.656 Durbin-Watson: 2.063
Prob(Omnibus): 0.720 Jarque-Bera (JB): 0.651
Skew: 0.061 Prob(JB): 0.722
Kurtosis: 2.185 Cond. No. 163.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.62
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.71e-05
Time: 04:56:28 Log-Likelihood: -101.01
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.0583 41.443 1.015 0.322 -44.391 128.508
C(dose)[T.1] 53.8074 8.893 6.050 0.000 35.256 72.359
expression 1.9653 6.632 0.296 0.770 -11.869 15.799
Omnibus: 0.479 Durbin-Watson: 1.820
Prob(Omnibus): 0.787 Jarque-Bera (JB): 0.569
Skew: 0.052 Prob(JB): 0.752
Kurtosis: 2.237 Cond. No. 59.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:56:28 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.011
Model: OLS Adj. R-squared: -0.036
Method: Least Squares F-statistic: 0.2351
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.633
Time: 04:56:28 Log-Likelihood: -112.98
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.2394 65.401 1.701 0.104 -24.769 247.248
expression -5.1951 10.713 -0.485 0.633 -27.475 17.085
Omnibus: 2.660 Durbin-Watson: 2.602
Prob(Omnibus): 0.264 Jarque-Bera (JB): 1.513
Skew: 0.340 Prob(JB): 0.469
Kurtosis: 1.943 Cond. No. 57.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.083 0.779 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.456
Model: OLS Adj. R-squared: 0.308
Method: Least Squares F-statistic: 3.074
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0727
Time: 04:56:28 Log-Likelihood: -70.733
No. Observations: 15 AIC: 149.5
Df Residuals: 11 BIC: 152.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 116.3571 129.037 0.902 0.387 -167.652 400.366
C(dose)[T.1] -7.4924 210.355 -0.036 0.972 -470.480 455.495
expression -6.3467 16.666 -0.381 0.711 -43.029 30.336
expression:C(dose)[T.1] 7.3817 27.685 0.267 0.795 -53.553 68.316
Omnibus: 2.867 Durbin-Watson: 0.701
Prob(Omnibus): 0.238 Jarque-Bera (JB): 1.958
Skew: -0.867 Prob(JB): 0.376
Kurtosis: 2.644 Cond. No. 251.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 4.960
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0269
Time: 04:56:28 Log-Likelihood: -70.782
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.7339 99.208 0.965 0.354 -120.422 311.889
C(dose)[T.1] 48.4204 15.917 3.042 0.010 13.741 83.100
expression -3.6716 12.783 -0.287 0.779 -31.522 24.179
Omnibus: 2.668 Durbin-Watson: 0.701
Prob(Omnibus): 0.263 Jarque-Bera (JB): 1.935
Skew: -0.843 Prob(JB): 0.380
Kurtosis: 2.498 Cond. No. 98.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:56:28 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.030
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.4067
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.535
Time: 04:56:28 Log-Likelihood: -75.069
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 171.7012 122.768 1.399 0.185 -93.523 436.925
expression -10.2724 16.107 -0.638 0.535 -45.070 24.525
Omnibus: 0.938 Durbin-Watson: 1.495
Prob(Omnibus): 0.626 Jarque-Bera (JB): 0.694
Skew: 0.065 Prob(JB): 0.707
Kurtosis: 1.954 Cond. No. 95.1