AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.211 0.651 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 12.98
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.62e-05
Time: 05:11:23 Log-Likelihood: -100.28
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 20.8405 74.768 0.279 0.783 -135.651 177.332
C(dose)[T.1] 164.4021 104.767 1.569 0.133 -54.877 383.681
expression 6.9872 15.606 0.448 0.659 -25.676 39.650
expression:C(dose)[T.1] -22.7793 21.550 -1.057 0.304 -67.884 22.325
Omnibus: 0.527 Durbin-Watson: 2.201
Prob(Omnibus): 0.768 Jarque-Bera (JB): 0.564
Skew: 0.307 Prob(JB): 0.754
Kurtosis: 2.541 Cond. No. 160.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.80
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.55e-05
Time: 05:11:23 Log-Likelihood: -100.94
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 77.8884 51.897 1.501 0.149 -30.368 186.145
C(dose)[T.1] 54.0534 8.862 6.099 0.000 35.567 72.540
expression -4.9586 10.794 -0.459 0.651 -27.474 17.556
Omnibus: 0.276 Durbin-Watson: 1.839
Prob(Omnibus): 0.871 Jarque-Bera (JB): 0.422
Skew: 0.206 Prob(JB): 0.810
Kurtosis: 2.480 Cond. No. 60.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:11:23 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.041
Method: Least Squares F-statistic: 0.1427
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.709
Time: 05:11:23 Log-Likelihood: -113.03
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 47.6280 85.261 0.559 0.582 -129.681 224.937
expression 6.6237 17.536 0.378 0.709 -29.845 43.092
Omnibus: 2.909 Durbin-Watson: 2.525
Prob(Omnibus): 0.233 Jarque-Bera (JB): 1.526
Skew: 0.314 Prob(JB): 0.466
Kurtosis: 1.905 Cond. No. 60.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.020 0.332 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.505
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 3.734
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0451
Time: 05:11:23 Log-Likelihood: -70.032
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.1266 118.277 0.128 0.901 -245.200 275.453
C(dose)[T.1] -57.0586 195.538 -0.292 0.776 -487.434 373.317
expression 10.7082 24.103 0.444 0.665 -42.343 63.759
expression:C(dose)[T.1] 20.6726 39.067 0.529 0.607 -65.313 106.659
Omnibus: 0.956 Durbin-Watson: 0.717
Prob(Omnibus): 0.620 Jarque-Bera (JB): 0.859
Skew: -0.407 Prob(JB): 0.651
Kurtosis: 2.156 Cond. No. 165.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.492
Model: OLS Adj. R-squared: 0.407
Method: Least Squares F-statistic: 5.810
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0172
Time: 05:11:23 Log-Likelihood: -70.221
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -23.3088 90.503 -0.258 0.801 -220.498 173.880
C(dose)[T.1] 46.0683 15.424 2.987 0.011 12.461 79.675
expression 18.5774 18.391 1.010 0.332 -21.493 58.648
Omnibus: 1.415 Durbin-Watson: 0.651
Prob(Omnibus): 0.493 Jarque-Bera (JB): 1.164
Skew: -0.553 Prob(JB): 0.559
Kurtosis: 2.200 Cond. No. 62.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:11:23 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.114
Model: OLS Adj. R-squared: 0.046
Method: Least Squares F-statistic: 1.678
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.218
Time: 05:11:23 Log-Likelihood: -74.390
No. Observations: 15 AIC: 152.8
Df Residuals: 13 BIC: 154.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -53.5947 114.086 -0.470 0.646 -300.063 192.874
expression 29.6056 22.855 1.295 0.218 -19.770 78.981
Omnibus: 0.678 Durbin-Watson: 1.179
Prob(Omnibus): 0.713 Jarque-Bera (JB): 0.634
Skew: 0.169 Prob(JB): 0.728
Kurtosis: 2.051 Cond. No. 61.9