AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.411 0.529 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 13.05
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.36e-05
Time: 03:38:20 Log-Likelihood: -100.24
No. Observations: 23 AIC: 208.5
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.0071 159.697 0.276 0.786 -290.243 378.257
C(dose)[T.1] -299.5090 345.882 -0.866 0.397 -1023.447 424.429
expression 1.0557 16.515 0.064 0.950 -33.510 35.621
expression:C(dose)[T.1] 33.2828 33.384 0.997 0.331 -36.591 103.156
Omnibus: 0.025 Durbin-Watson: 1.992
Prob(Omnibus): 0.987 Jarque-Bera (JB): 0.160
Skew: -0.067 Prob(JB): 0.923
Kurtosis: 2.614 Cond. No. 966.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.08
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.31e-05
Time: 03:38:20 Log-Likelihood: -100.83
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -34.6979 138.799 -0.250 0.805 -324.227 254.831
C(dose)[T.1] 44.9701 15.674 2.869 0.009 12.275 77.665
expression 9.2005 14.350 0.641 0.529 -20.734 39.135
Omnibus: 0.073 Durbin-Watson: 1.895
Prob(Omnibus): 0.964 Jarque-Bera (JB): 0.194
Skew: 0.114 Prob(JB): 0.907
Kurtosis: 2.612 Cond. No. 329.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:38:20 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.515
Model: OLS Adj. R-squared: 0.491
Method: Least Squares F-statistic: 22.26
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000117
Time: 03:38:20 Log-Likelihood: -104.79
No. Observations: 23 AIC: 213.6
Df Residuals: 21 BIC: 215.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -359.3617 93.195 -3.856 0.001 -553.172 -165.552
expression 43.4813 9.216 4.718 0.000 24.317 62.646
Omnibus: 0.692 Durbin-Watson: 2.015
Prob(Omnibus): 0.708 Jarque-Bera (JB): 0.749
Skew: 0.295 Prob(JB): 0.688
Kurtosis: 2.342 Cond. No. 189.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.060 0.811 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.529
Model: OLS Adj. R-squared: 0.401
Method: Least Squares F-statistic: 4.118
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0348
Time: 03:38:20 Log-Likelihood: -69.654
No. Observations: 15 AIC: 147.3
Df Residuals: 11 BIC: 150.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 128.3930 147.616 0.870 0.403 -196.507 453.293
C(dose)[T.1] -385.2073 322.274 -1.195 0.257 -1094.527 324.112
expression -6.9692 16.827 -0.414 0.687 -44.005 30.067
expression:C(dose)[T.1] 47.7867 35.529 1.345 0.206 -30.413 125.986
Omnibus: 1.759 Durbin-Watson: 1.136
Prob(Omnibus): 0.415 Jarque-Bera (JB): 1.359
Skew: -0.670 Prob(JB): 0.507
Kurtosis: 2.385 Cond. No. 465.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.939
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0272
Time: 03:38:20 Log-Likelihood: -70.796
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 34.6285 134.431 0.258 0.801 -258.272 327.529
C(dose)[T.1] 47.6919 16.860 2.829 0.015 10.958 84.426
expression 3.7495 15.312 0.245 0.811 -29.611 37.110
Omnibus: 2.400 Durbin-Watson: 0.894
Prob(Omnibus): 0.301 Jarque-Bera (JB): 1.735
Skew: -0.796 Prob(JB): 0.420
Kurtosis: 2.507 Cond. No. 156.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:38:20 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.086
Model: OLS Adj. R-squared: 0.015
Method: Least Squares F-statistic: 1.220
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.289
Time: 03:38:21 Log-Likelihood: -74.628
No. Observations: 15 AIC: 153.3
Df Residuals: 13 BIC: 154.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -81.3794 158.800 -0.512 0.617 -424.447 261.688
expression 19.5326 17.687 1.104 0.289 -18.677 57.742
Omnibus: 0.339 Durbin-Watson: 1.482
Prob(Omnibus): 0.844 Jarque-Bera (JB): 0.480
Skew: -0.202 Prob(JB): 0.787
Kurtosis: 2.222 Cond. No. 149.