AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.652 | 0.213 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.738 |
Model: | OLS | Adj. R-squared: | 0.697 |
Method: | Least Squares | F-statistic: | 17.86 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.32e-06 |
Time: | 03:44:50 | Log-Likelihood: | -97.692 |
No. Observations: | 23 | AIC: | 203.4 |
Df Residuals: | 19 | BIC: | 207.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 109.7833 | 168.091 | 0.653 | 0.522 | -242.035 461.602 |
C(dose)[T.1] | -499.0392 | 258.998 | -1.927 | 0.069 | -1041.128 43.049 |
expression | -6.3148 | 19.090 | -0.331 | 0.744 | -46.270 33.641 |
expression:C(dose)[T.1] | 62.2832 | 29.271 | 2.128 | 0.047 | 1.019 123.548 |
Omnibus: | 0.737 | Durbin-Watson: | 1.745 |
Prob(Omnibus): | 0.692 | Jarque-Bera (JB): | 0.781 |
Skew: | 0.309 | Prob(JB): | 0.677 |
Kurtosis: | 2.342 | Cond. No. | 750. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.676 |
Model: | OLS | Adj. R-squared: | 0.643 |
Method: | Least Squares | F-statistic: | 20.85 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.28e-05 |
Time: | 03:44:50 | Log-Likelihood: | -100.15 |
No. Observations: | 23 | AIC: | 206.3 |
Df Residuals: | 20 | BIC: | 209.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -123.3620 | 138.257 | -0.892 | 0.383 | -411.762 165.038 |
C(dose)[T.1] | 51.8094 | 8.512 | 6.087 | 0.000 | 34.054 69.565 |
expression | 20.1767 | 15.696 | 1.285 | 0.213 | -12.564 52.918 |
Omnibus: | 1.248 | Durbin-Watson: | 1.926 |
Prob(Omnibus): | 0.536 | Jarque-Bera (JB): | 1.042 |
Skew: | 0.312 | Prob(JB): | 0.594 |
Kurtosis: | 2.164 | Cond. No. | 294. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:44:50 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.075 |
Model: | OLS | Adj. R-squared: | 0.031 |
Method: | Least Squares | F-statistic: | 1.712 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.205 |
Time: | 03:44:50 | Log-Likelihood: | -112.20 |
No. Observations: | 23 | AIC: | 228.4 |
Df Residuals: | 21 | BIC: | 230.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -216.4536 | 226.477 | -0.956 | 0.350 | -687.439 254.532 |
expression | 33.5150 | 25.616 | 1.308 | 0.205 | -19.757 86.787 |
Omnibus: | 4.219 | Durbin-Watson: | 2.735 |
Prob(Omnibus): | 0.121 | Jarque-Bera (JB): | 1.499 |
Skew: | 0.052 | Prob(JB): | 0.473 |
Kurtosis: | 1.754 | Cond. No. | 292. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.137 | 0.718 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.468 |
Model: | OLS | Adj. R-squared: | 0.323 |
Method: | Least Squares | F-statistic: | 3.224 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0650 |
Time: | 03:44:50 | Log-Likelihood: | -70.568 |
No. Observations: | 15 | AIC: | 149.1 |
Df Residuals: | 11 | BIC: | 152.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -147.1257 | 810.458 | -0.182 | 0.859 | -1930.931 1636.679 |
C(dose)[T.1] | 528.5801 | 934.270 | 0.566 | 0.583 | -1527.734 2584.894 |
expression | 23.2308 | 87.743 | 0.265 | 0.796 | -169.890 216.352 |
expression:C(dose)[T.1] | -52.4936 | 101.660 | -0.516 | 0.616 | -276.246 171.259 |
Omnibus: | 1.962 | Durbin-Watson: | 0.901 |
Prob(Omnibus): | 0.375 | Jarque-Bera (JB): | 1.195 |
Skew: | -0.681 | Prob(JB): | 0.550 |
Kurtosis: | 2.762 | Cond. No. | 1.59e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.455 |
Model: | OLS | Adj. R-squared: | 0.364 |
Method: | Least Squares | F-statistic: | 5.009 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0262 |
Time: | 03:44:50 | Log-Likelihood: | -70.748 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 214.0348 | 396.727 | 0.540 | 0.599 | -650.359 1078.429 |
C(dose)[T.1] | 46.2486 | 17.565 | 2.633 | 0.022 | 7.978 84.519 |
expression | -15.8738 | 42.938 | -0.370 | 0.718 | -109.427 77.680 |
Omnibus: | 2.686 | Durbin-Watson: | 0.886 |
Prob(Omnibus): | 0.261 | Jarque-Bera (JB): | 1.696 |
Skew: | -0.816 | Prob(JB): | 0.428 |
Kurtosis: | 2.772 | Cond. No. | 471. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:44:50 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.140 |
Model: | OLS | Adj. R-squared: | 0.074 |
Method: | Least Squares | F-statistic: | 2.118 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.169 |
Time: | 03:44:50 | Log-Likelihood: | -74.168 |
No. Observations: | 15 | AIC: | 152.3 |
Df Residuals: | 13 | BIC: | 153.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 707.6185 | 421.950 | 1.677 | 0.117 | -203.949 1619.186 |
expression | -67.1961 | 46.170 | -1.455 | 0.169 | -166.941 32.549 |
Omnibus: | 0.439 | Durbin-Watson: | 1.528 |
Prob(Omnibus): | 0.803 | Jarque-Bera (JB): | 0.001 |
Skew: | 0.008 | Prob(JB): | 1.00 |
Kurtosis: | 2.973 | Cond. No. | 414. |