AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.100 0.755 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.598
Method: Least Squares F-statistic: 11.91
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000129
Time: 04:45:54 Log-Likelihood: -100.94
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 83.7924 65.902 1.271 0.219 -54.143 221.727
C(dose)[T.1] 25.4524 80.224 0.317 0.755 -142.458 193.362
expression -5.7642 12.784 -0.451 0.657 -32.521 20.992
expression:C(dose)[T.1] 5.3840 16.313 0.330 0.745 -28.759 39.527
Omnibus: 0.041 Durbin-Watson: 1.826
Prob(Omnibus): 0.980 Jarque-Bera (JB): 0.251
Skew: 0.045 Prob(JB): 0.882
Kurtosis: 2.496 Cond. No. 124.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.64
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.70e-05
Time: 04:45:54 Log-Likelihood: -101.01
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 66.8220 40.294 1.658 0.113 -17.231 150.875
C(dose)[T.1] 51.7075 10.150 5.094 0.000 30.536 72.879
expression -2.4577 7.762 -0.317 0.755 -18.649 13.734
Omnibus: 0.406 Durbin-Watson: 1.875
Prob(Omnibus): 0.816 Jarque-Bera (JB): 0.542
Skew: 0.134 Prob(JB): 0.763
Kurtosis: 2.297 Cond. No. 47.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:45:54 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.198
Model: OLS Adj. R-squared: 0.159
Method: Least Squares F-statistic: 5.173
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0335
Time: 04:45:54 Log-Likelihood: -110.57
No. Observations: 23 AIC: 225.1
Df Residuals: 21 BIC: 227.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 188.1077 48.090 3.912 0.001 88.098 288.117
expression -22.5098 9.896 -2.275 0.034 -43.091 -1.929
Omnibus: 1.364 Durbin-Watson: 2.223
Prob(Omnibus): 0.506 Jarque-Bera (JB): 0.984
Skew: 0.493 Prob(JB): 0.611
Kurtosis: 2.770 Cond. No. 37.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.912 0.358 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.494
Model: OLS Adj. R-squared: 0.356
Method: Least Squares F-statistic: 3.580
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0503
Time: 04:45:54 Log-Likelihood: -70.191
No. Observations: 15 AIC: 148.4
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2.7673 72.245 -0.038 0.970 -161.778 156.244
C(dose)[T.1] 102.3512 159.125 0.643 0.533 -247.881 452.583
expression 11.9243 12.116 0.984 0.346 -14.743 38.591
expression:C(dose)[T.1] -9.2738 25.105 -0.369 0.719 -64.530 45.982
Omnibus: 2.419 Durbin-Watson: 0.748
Prob(Omnibus): 0.298 Jarque-Bera (JB): 1.591
Skew: -0.782 Prob(JB): 0.451
Kurtosis: 2.687 Cond. No. 156.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.488
Model: OLS Adj. R-squared: 0.402
Method: Least Squares F-statistic: 5.712
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0181
Time: 04:45:54 Log-Likelihood: -70.283
No. Observations: 15 AIC: 146.6
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 9.9480 61.190 0.163 0.874 -123.374 143.270
C(dose)[T.1] 43.8979 16.156 2.717 0.019 8.698 79.098
expression 9.7643 10.223 0.955 0.358 -12.509 32.037
Omnibus: 2.875 Durbin-Watson: 0.701
Prob(Omnibus): 0.238 Jarque-Bera (JB): 1.786
Skew: -0.840 Prob(JB): 0.409
Kurtosis: 2.816 Cond. No. 51.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:45:54 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.173
Model: OLS Adj. R-squared: 0.109
Method: Least Squares F-statistic: 2.711
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.124
Time: 04:45:54 Log-Likelihood: -73.880
No. Observations: 15 AIC: 151.8
Df Residuals: 13 BIC: 153.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -25.5456 72.995 -0.350 0.732 -183.242 132.151
expression 19.3018 11.724 1.646 0.124 -6.025 44.629
Omnibus: 2.687 Durbin-Watson: 1.367
Prob(Omnibus): 0.261 Jarque-Bera (JB): 1.139
Skew: 0.196 Prob(JB): 0.566
Kurtosis: 1.708 Cond. No. 50.4