AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.106 | 0.748 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.600 |
Method: | Least Squares | F-statistic: | 11.99 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000124 |
Time: | 04:14:59 | Log-Likelihood: | -100.89 |
No. Observations: | 23 | AIC: | 209.8 |
Df Residuals: | 19 | BIC: | 214.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 61.2658 | 282.862 | 0.217 | 0.831 | -530.771 653.302 |
C(dose)[T.1] | -153.0416 | 464.925 | -0.329 | 0.746 | -1126.142 820.058 |
expression | -0.6902 | 27.656 | -0.025 | 0.980 | -58.574 57.194 |
expression:C(dose)[T.1] | 19.2809 | 44.146 | 0.437 | 0.667 | -73.117 111.679 |
Omnibus: | 0.397 | Durbin-Watson: | 1.914 |
Prob(Omnibus): | 0.820 | Jarque-Bera (JB): | 0.532 |
Skew: | 0.093 | Prob(JB): | 0.767 |
Kurtosis: | 2.279 | Cond. No. | 1.36e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.65 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.69e-05 |
Time: | 04:14:59 | Log-Likelihood: | -101.00 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -16.1101 | 216.004 | -0.075 | 0.941 | -466.686 434.466 |
C(dose)[T.1] | 49.9266 | 13.645 | 3.659 | 0.002 | 21.465 78.389 |
expression | 6.8767 | 21.116 | 0.326 | 0.748 | -37.170 50.923 |
Omnibus: | 0.377 | Durbin-Watson: | 2.005 |
Prob(Omnibus): | 0.828 | Jarque-Bera (JB): | 0.515 |
Skew: | 0.047 | Prob(JB): | 0.773 |
Kurtosis: | 2.273 | Cond. No. | 523. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:14:59 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.417 |
Model: | OLS | Adj. R-squared: | 0.389 |
Method: | Least Squares | F-statistic: | 15.03 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000871 |
Time: | 04:14:59 | Log-Likelihood: | -106.90 |
No. Observations: | 23 | AIC: | 217.8 |
Df Residuals: | 21 | BIC: | 220.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -612.6816 | 178.663 | -3.429 | 0.003 | -984.231 -241.132 |
expression | 66.1774 | 17.068 | 3.877 | 0.001 | 30.683 101.672 |
Omnibus: | 1.026 | Durbin-Watson: | 2.611 |
Prob(Omnibus): | 0.599 | Jarque-Bera (JB): | 0.785 |
Skew: | 0.004 | Prob(JB): | 0.675 |
Kurtosis: | 2.095 | Cond. No. | 343. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.616 | 0.132 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.556 |
Model: | OLS | Adj. R-squared: | 0.435 |
Method: | Least Squares | F-statistic: | 4.586 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0257 |
Time: | 04:14:59 | Log-Likelihood: | -69.216 |
No. Observations: | 15 | AIC: | 146.4 |
Df Residuals: | 11 | BIC: | 149.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -386.5476 | 311.249 | -1.242 | 0.240 | -1071.603 298.508 |
C(dose)[T.1] | 245.0538 | 475.294 | 0.516 | 0.616 | -801.062 1291.169 |
expression | 45.5971 | 31.243 | 1.459 | 0.172 | -23.168 114.362 |
expression:C(dose)[T.1] | -20.9514 | 46.384 | -0.452 | 0.660 | -123.043 81.140 |
Omnibus: | 1.793 | Durbin-Watson: | 1.058 |
Prob(Omnibus): | 0.408 | Jarque-Bera (JB): | 1.420 |
Skew: | -0.648 | Prob(JB): | 0.492 |
Kurtosis: | 2.231 | Cond. No. | 869. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.547 |
Model: | OLS | Adj. R-squared: | 0.472 |
Method: | Least Squares | F-statistic: | 7.258 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00859 |
Time: | 04:14:59 | Log-Likelihood: | -69.354 |
No. Observations: | 15 | AIC: | 144.7 |
Df Residuals: | 12 | BIC: | 146.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -291.9090 | 222.403 | -1.313 | 0.214 | -776.484 192.666 |
C(dose)[T.1] | 30.5392 | 18.342 | 1.665 | 0.122 | -9.425 70.504 |
expression | 36.0917 | 22.314 | 1.617 | 0.132 | -12.525 84.709 |
Omnibus: | 1.973 | Durbin-Watson: | 0.955 |
Prob(Omnibus): | 0.373 | Jarque-Bera (JB): | 1.444 |
Skew: | -0.586 | Prob(JB): | 0.486 |
Kurtosis: | 2.031 | Cond. No. | 324. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:14:59 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.443 |
Model: | OLS | Adj. R-squared: | 0.400 |
Method: | Least Squares | F-statistic: | 10.33 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00677 |
Time: | 04:14:59 | Log-Likelihood: | -70.913 |
No. Observations: | 15 | AIC: | 145.8 |
Df Residuals: | 13 | BIC: | 147.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -514.6670 | 189.381 | -2.718 | 0.018 | -923.799 -105.535 |
expression | 59.4543 | 18.494 | 3.215 | 0.007 | 19.501 99.408 |
Omnibus: | 2.509 | Durbin-Watson: | 1.651 |
Prob(Omnibus): | 0.285 | Jarque-Bera (JB): | 1.331 |
Skew: | 0.411 | Prob(JB): | 0.514 |
Kurtosis: | 1.794 | Cond. No. | 258. |