AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.492 0.491 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.606
Method: Least Squares F-statistic: 12.29
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000106
Time: 03:37:35 Log-Likelihood: -100.70
No. Observations: 23 AIC: 209.4
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -25.8627 106.482 -0.243 0.811 -248.732 197.007
C(dose)[T.1] 109.8263 154.443 0.711 0.486 -213.426 433.078
expression 12.3364 16.378 0.753 0.461 -21.944 46.617
expression:C(dose)[T.1] -8.7939 23.446 -0.375 0.712 -57.867 40.279
Omnibus: 0.113 Durbin-Watson: 1.963
Prob(Omnibus): 0.945 Jarque-Bera (JB): 0.337
Skew: 0.003 Prob(JB): 0.845
Kurtosis: 2.407 Cond. No. 303.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.20
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.22e-05
Time: 03:37:35 Log-Likelihood: -100.78
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 1.9899 74.657 0.027 0.979 -153.741 157.721
C(dose)[T.1] 51.9996 8.871 5.862 0.000 33.495 70.504
expression 8.0452 11.465 0.702 0.491 -15.871 31.961
Omnibus: 0.306 Durbin-Watson: 1.978
Prob(Omnibus): 0.858 Jarque-Bera (JB): 0.477
Skew: 0.085 Prob(JB): 0.788
Kurtosis: 2.315 Cond. No. 116.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:37:35 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.069
Model: OLS Adj. R-squared: 0.025
Method: Least Squares F-statistic: 1.558
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.226
Time: 03:37:35 Log-Likelihood: -112.28
No. Observations: 23 AIC: 228.6
Df Residuals: 21 BIC: 230.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -68.0145 118.569 -0.574 0.572 -314.592 178.562
expression 22.4853 18.015 1.248 0.226 -14.980 59.950
Omnibus: 1.205 Durbin-Watson: 2.399
Prob(Omnibus): 0.547 Jarque-Bera (JB): 1.100
Skew: 0.391 Prob(JB): 0.577
Kurtosis: 2.268 Cond. No. 115.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.012 0.182 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.539
Model: OLS Adj. R-squared: 0.413
Method: Least Squares F-statistic: 4.288
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0311
Time: 03:37:35 Log-Likelihood: -69.492
No. Observations: 15 AIC: 147.0
Df Residuals: 11 BIC: 149.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -92.6822 125.910 -0.736 0.477 -369.808 184.443
C(dose)[T.1] 142.8411 156.140 0.915 0.380 -200.822 486.504
expression 29.0023 22.720 1.276 0.228 -21.005 79.009
expression:C(dose)[T.1] -15.2548 29.605 -0.515 0.617 -80.415 49.906
Omnibus: 0.601 Durbin-Watson: 1.296
Prob(Omnibus): 0.741 Jarque-Bera (JB): 0.246
Skew: -0.301 Prob(JB): 0.884
Kurtosis: 2.820 Cond. No. 155.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.528
Model: OLS Adj. R-squared: 0.449
Method: Least Squares F-statistic: 6.710
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0111
Time: 03:37:35 Log-Likelihood: -69.671
No. Observations: 15 AIC: 145.3
Df Residuals: 12 BIC: 147.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -43.0817 78.639 -0.548 0.594 -214.420 128.257
C(dose)[T.1] 62.9253 17.489 3.598 0.004 24.820 101.030
expression 20.0177 14.114 1.418 0.182 -10.733 50.769
Omnibus: 0.391 Durbin-Watson: 1.378
Prob(Omnibus): 0.823 Jarque-Bera (JB): 0.030
Skew: -0.099 Prob(JB): 0.985
Kurtosis: 2.912 Cond. No. 58.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:37:35 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.019
Model: OLS Adj. R-squared: -0.057
Method: Least Squares F-statistic: 0.2467
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.628
Time: 03:37:35 Log-Likelihood: -75.159
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 135.3580 84.539 1.601 0.133 -47.277 317.993
expression -8.0878 16.283 -0.497 0.628 -43.266 27.090
Omnibus: 0.207 Durbin-Watson: 1.443
Prob(Omnibus): 0.902 Jarque-Bera (JB): 0.397
Skew: -0.132 Prob(JB): 0.820
Kurtosis: 2.248 Cond. No. 45.2