AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.195 0.663 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.599
Method: Least Squares F-statistic: 11.96
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000126
Time: 05:17:12 Log-Likelihood: -100.91
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 61.6667 107.212 0.575 0.572 -162.730 286.064
C(dose)[T.1] 85.8841 133.834 0.642 0.529 -194.233 366.001
expression -1.1738 16.845 -0.070 0.945 -36.430 34.083
expression:C(dose)[T.1] -5.7470 21.784 -0.264 0.795 -51.341 39.848
Omnibus: 0.114 Durbin-Watson: 1.910
Prob(Omnibus): 0.945 Jarque-Bera (JB): 0.338
Skew: 0.003 Prob(JB): 0.844
Kurtosis: 2.406 Cond. No. 254.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.77
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.57e-05
Time: 05:17:12 Log-Likelihood: -100.95
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 83.5015 66.546 1.255 0.224 -55.310 222.313
C(dose)[T.1] 50.6925 10.581 4.791 0.000 28.620 72.765
expression -4.6101 10.430 -0.442 0.663 -26.366 17.146
Omnibus: 0.254 Durbin-Watson: 1.880
Prob(Omnibus): 0.881 Jarque-Bera (JB): 0.442
Skew: 0.017 Prob(JB): 0.802
Kurtosis: 2.322 Cond. No. 96.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:17:12 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.254
Model: OLS Adj. R-squared: 0.218
Method: Least Squares F-statistic: 7.136
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0143
Time: 05:17:12 Log-Likelihood: -109.74
No. Observations: 23 AIC: 223.5
Df Residuals: 21 BIC: 225.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 279.5164 75.056 3.724 0.001 123.429 435.603
expression -32.8629 12.302 -2.671 0.014 -58.447 -7.278
Omnibus: 2.373 Durbin-Watson: 2.303
Prob(Omnibus): 0.305 Jarque-Bera (JB): 1.253
Skew: 0.200 Prob(JB): 0.534
Kurtosis: 1.929 Cond. No. 75.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.568 0.465 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.502
Model: OLS Adj. R-squared: 0.366
Method: Least Squares F-statistic: 3.699
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0462
Time: 05:17:12 Log-Likelihood: -70.068
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 151.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 92.4576 144.906 0.638 0.536 -226.478 411.393
C(dose)[T.1] 238.3761 246.931 0.965 0.355 -305.115 781.868
expression -3.9634 22.875 -0.173 0.866 -54.311 46.384
expression:C(dose)[T.1] -32.5555 41.010 -0.794 0.444 -122.819 57.708
Omnibus: 7.316 Durbin-Watson: 0.745
Prob(Omnibus): 0.026 Jarque-Bera (JB): 4.237
Skew: -1.238 Prob(JB): 0.120
Kurtosis: 3.802 Cond. No. 243.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.386
Method: Least Squares F-statistic: 5.400
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0213
Time: 05:17:12 Log-Likelihood: -70.486
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 156.4204 118.568 1.319 0.212 -101.917 414.758
C(dose)[T.1] 42.8639 17.524 2.446 0.031 4.683 81.045
expression -14.0920 18.691 -0.754 0.465 -54.816 26.632
Omnibus: 2.663 Durbin-Watson: 0.578
Prob(Omnibus): 0.264 Jarque-Bera (JB): 1.615
Skew: -0.799 Prob(JB): 0.446
Kurtosis: 2.831 Cond. No. 97.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:17:12 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.211
Model: OLS Adj. R-squared: 0.151
Method: Least Squares F-statistic: 3.483
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0847
Time: 05:17:12 Log-Likelihood: -73.520
No. Observations: 15 AIC: 151.0
Df Residuals: 13 BIC: 152.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 312.4144 117.564 2.657 0.020 58.433 566.396
expression -36.0055 19.294 -1.866 0.085 -77.687 5.676
Omnibus: 2.786 Durbin-Watson: 0.831
Prob(Omnibus): 0.248 Jarque-Bera (JB): 1.323
Skew: -0.363 Prob(JB): 0.516
Kurtosis: 1.740 Cond. No. 81.5