AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.528 0.476 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 12.19
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000112
Time: 05:13:40 Log-Likelihood: -100.76
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -137.5035 362.774 -0.379 0.709 -896.798 621.791
C(dose)[T.1] 47.5384 554.320 0.086 0.933 -1112.667 1207.743
expression 21.7352 41.123 0.529 0.603 -64.337 107.807
expression:C(dose)[T.1] -0.3723 61.202 -0.006 0.995 -128.470 127.726
Omnibus: 0.619 Durbin-Watson: 2.080
Prob(Omnibus): 0.734 Jarque-Bera (JB): 0.631
Skew: -0.033 Prob(JB): 0.729
Kurtosis: 2.191 Cond. No. 1.45e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.25
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.18e-05
Time: 05:13:40 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -136.0209 261.905 -0.519 0.609 -682.346 410.304
C(dose)[T.1] 44.1678 15.304 2.886 0.009 12.244 76.092
expression 21.5671 29.686 0.727 0.476 -40.356 83.490
Omnibus: 0.613 Durbin-Watson: 2.079
Prob(Omnibus): 0.736 Jarque-Bera (JB): 0.629
Skew: -0.033 Prob(JB): 0.730
Kurtosis: 2.193 Cond. No. 555.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:13:40 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.516
Model: OLS Adj. R-squared: 0.493
Method: Least Squares F-statistic: 22.36
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000114
Time: 05:13:40 Log-Likelihood: -104.77
No. Observations: 23 AIC: 213.5
Df Residuals: 21 BIC: 215.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -752.4268 176.049 -4.274 0.000 -1118.540 -386.314
expression 92.2180 19.502 4.729 0.000 51.662 132.774
Omnibus: 2.003 Durbin-Watson: 2.494
Prob(Omnibus): 0.367 Jarque-Bera (JB): 1.195
Skew: -0.232 Prob(JB): 0.550
Kurtosis: 1.984 Cond. No. 320.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.211 0.163 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.535
Model: OLS Adj. R-squared: 0.408
Method: Least Squares F-statistic: 4.214
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0327
Time: 05:13:40 Log-Likelihood: -69.562
No. Observations: 15 AIC: 147.1
Df Residuals: 11 BIC: 150.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -326.4553 368.853 -0.885 0.395 -1138.295 485.384
C(dose)[T.1] 91.7176 524.256 0.175 0.864 -1062.163 1245.598
expression 45.6991 42.776 1.068 0.308 -48.450 139.848
expression:C(dose)[T.1] -3.8412 61.628 -0.062 0.951 -139.483 131.801
Omnibus: 1.192 Durbin-Watson: 1.000
Prob(Omnibus): 0.551 Jarque-Bera (JB): 0.986
Skew: -0.438 Prob(JB): 0.611
Kurtosis: 2.099 Cond. No. 790.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.535
Model: OLS Adj. R-squared: 0.457
Method: Least Squares F-statistic: 6.891
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0102
Time: 05:13:40 Log-Likelihood: -69.565
No. Observations: 15 AIC: 145.1
Df Residuals: 12 BIC: 147.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -310.5049 254.376 -1.221 0.246 -864.743 243.733
C(dose)[T.1] 59.0574 15.911 3.712 0.003 24.390 93.725
expression 43.8485 29.488 1.487 0.163 -20.400 108.097
Omnibus: 1.106 Durbin-Watson: 0.970
Prob(Omnibus): 0.575 Jarque-Bera (JB): 0.931
Skew: -0.410 Prob(JB): 0.628
Kurtosis: 2.097 Cond. No. 305.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:13:40 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.002193
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.963
Time: 05:13:40 Log-Likelihood: -75.299
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 108.6883 320.954 0.339 0.740 -584.691 802.068
expression -1.7674 37.744 -0.047 0.963 -83.309 79.774
Omnibus: 0.510 Durbin-Watson: 1.610
Prob(Omnibus): 0.775 Jarque-Bera (JB): 0.544
Skew: 0.032 Prob(JB): 0.762
Kurtosis: 2.069 Cond. No. 272.