AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.228 0.281 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.705
Model: OLS Adj. R-squared: 0.659
Method: Least Squares F-statistic: 15.17
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.80e-05
Time: 04:49:12 Log-Likelihood: -99.049
No. Observations: 23 AIC: 206.1
Df Residuals: 19 BIC: 210.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 65.2479 54.593 1.195 0.247 -49.016 179.512
C(dose)[T.1] -71.3821 81.304 -0.878 0.391 -241.554 98.790
expression -1.8313 9.006 -0.203 0.841 -20.682 17.019
expression:C(dose)[T.1] 20.1430 13.205 1.525 0.144 -7.496 47.782
Omnibus: 0.272 Durbin-Watson: 1.984
Prob(Omnibus): 0.873 Jarque-Bera (JB): 0.423
Skew: 0.202 Prob(JB): 0.810
Kurtosis: 2.473 Cond. No. 159.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.636
Method: Least Squares F-statistic: 20.24
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.56e-05
Time: 04:49:13 Log-Likelihood: -100.38
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 8.7641 41.424 0.212 0.835 -77.644 95.172
C(dose)[T.1] 51.9833 8.600 6.045 0.000 34.045 69.922
expression 7.5383 6.802 1.108 0.281 -6.650 21.726
Omnibus: 0.764 Durbin-Watson: 1.840
Prob(Omnibus): 0.682 Jarque-Bera (JB): 0.694
Skew: 0.050 Prob(JB): 0.707
Kurtosis: 2.155 Cond. No. 61.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:49:13 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.065
Model: OLS Adj. R-squared: 0.021
Method: Least Squares F-statistic: 1.467
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.239
Time: 04:49:13 Log-Likelihood: -112.33
No. Observations: 23 AIC: 228.7
Df Residuals: 21 BIC: 230.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2.0837 67.906 -0.031 0.976 -143.303 139.135
expression 13.3786 11.047 1.211 0.239 -9.596 36.353
Omnibus: 2.864 Durbin-Watson: 2.365
Prob(Omnibus): 0.239 Jarque-Bera (JB): 1.261
Skew: 0.056 Prob(JB): 0.532
Kurtosis: 1.858 Cond. No. 61.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.983 0.341 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.528
Model: OLS Adj. R-squared: 0.399
Method: Least Squares F-statistic: 4.096
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0353
Time: 04:49:13 Log-Likelihood: -69.675
No. Observations: 15 AIC: 147.3
Df Residuals: 11 BIC: 150.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 170.7068 77.272 2.209 0.049 0.631 340.782
C(dose)[T.1] -64.8380 123.626 -0.524 0.610 -336.936 207.260
expression -17.9239 13.271 -1.351 0.204 -47.134 11.286
expression:C(dose)[T.1] 19.7895 21.284 0.930 0.372 -27.056 66.635
Omnibus: 2.462 Durbin-Watson: 0.841
Prob(Omnibus): 0.292 Jarque-Bera (JB): 1.419
Skew: -0.751 Prob(JB): 0.492
Kurtosis: 2.880 Cond. No. 123.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.491
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 5.777
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0175
Time: 04:49:13 Log-Likelihood: -70.242
No. Observations: 15 AIC: 146.5
Df Residuals: 12 BIC: 148.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 126.3742 60.464 2.090 0.059 -5.364 258.113
C(dose)[T.1] 49.2326 15.132 3.254 0.007 16.263 82.202
expression -10.2300 10.317 -0.992 0.341 -32.708 12.248
Omnibus: 1.925 Durbin-Watson: 0.696
Prob(Omnibus): 0.382 Jarque-Bera (JB): 1.147
Skew: -0.669 Prob(JB): 0.564
Kurtosis: 2.784 Cond. No. 48.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:49:13 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.041
Model: OLS Adj. R-squared: -0.033
Method: Least Squares F-statistic: 0.5570
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.469
Time: 04:49:13 Log-Likelihood: -74.985
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 152.1649 79.008 1.926 0.076 -18.522 322.852
expression -10.1490 13.598 -0.746 0.469 -39.526 19.228
Omnibus: 2.524 Durbin-Watson: 1.628
Prob(Omnibus): 0.283 Jarque-Bera (JB): 1.251
Skew: 0.346 Prob(JB): 0.535
Kurtosis: 1.766 Cond. No. 47.5