AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.713 0.408 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 12.36
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.000103
Time: 11:41:45 Log-Likelihood: -100.66
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 0.6617 86.941 0.008 0.994 -181.308 182.632
C(dose)[T.1] 47.7190 138.927 0.343 0.735 -243.059 338.497
expression 7.9682 12.906 0.617 0.544 -19.044 34.980
expression:C(dose)[T.1] 1.0636 20.958 0.051 0.960 -42.802 44.929
Omnibus: 1.343 Durbin-Watson: 1.937
Prob(Omnibus): 0.511 Jarque-Bera (JB): 0.887
Skew: 0.014 Prob(JB): 0.642
Kurtosis: 2.038 Cond. No. 263.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.627
Method: Least Squares F-statistic: 19.51
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.00e-05
Time: 11:41:45 Log-Likelihood: -100.66
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2.0486 66.873 -0.031 0.976 -141.543 137.446
C(dose)[T.1] 54.7548 8.779 6.237 0.000 36.441 73.068
expression 8.3716 9.912 0.845 0.408 -12.304 29.047
Omnibus: 1.355 Durbin-Watson: 1.950
Prob(Omnibus): 0.508 Jarque-Bera (JB): 0.890
Skew: 0.012 Prob(JB): 0.641
Kurtosis: 2.036 Cond. No. 106.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:41:45 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.04476
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.834
Time: 11:41:45 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 102.6017 108.409 0.946 0.355 -122.847 328.050
expression -3.4470 16.293 -0.212 0.834 -37.330 30.436
Omnibus: 3.109 Durbin-Watson: 2.427
Prob(Omnibus): 0.211 Jarque-Bera (JB): 1.519
Skew: 0.282 Prob(JB): 0.468
Kurtosis: 1.875 Cond. No. 102.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.053 0.325 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.507
Model: OLS Adj. R-squared: 0.372
Method: Least Squares F-statistic: 3.769
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0441
Time: 11:41:45 Log-Likelihood: -69.998
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 210.5956 130.088 1.619 0.134 -75.727 496.918
C(dose)[T.1] -55.4957 191.597 -0.290 0.777 -477.197 366.205
expression -20.2059 18.290 -1.105 0.293 -60.462 20.050
expression:C(dose)[T.1] 14.8115 26.856 0.552 0.592 -44.298 73.921
Omnibus: 2.959 Durbin-Watson: 1.085
Prob(Omnibus): 0.228 Jarque-Bera (JB): 1.900
Skew: -0.864 Prob(JB): 0.387
Kurtosis: 2.768 Cond. No. 235.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.493
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 5.840
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0169
Time: 11:41:45 Log-Likelihood: -70.202
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 161.9210 92.758 1.746 0.106 -40.182 364.024
C(dose)[T.1] 49.8233 15.104 3.299 0.006 16.914 82.732
expression -13.3362 12.999 -1.026 0.325 -41.658 14.986
Omnibus: 3.442 Durbin-Watson: 0.963
Prob(Omnibus): 0.179 Jarque-Bera (JB): 2.183
Skew: -0.931 Prob(JB): 0.336
Kurtosis: 2.838 Cond. No. 89.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:41:45 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.034
Model: OLS Adj. R-squared: -0.041
Method: Least Squares F-statistic: 0.4533
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.513
Time: 11:41:45 Log-Likelihood: -75.043
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 176.1595 122.928 1.433 0.175 -89.411 441.730
expression -11.6016 17.231 -0.673 0.513 -48.827 25.624
Omnibus: 1.796 Durbin-Watson: 1.882
Prob(Omnibus): 0.407 Jarque-Bera (JB): 0.945
Skew: 0.164 Prob(JB): 0.623
Kurtosis: 1.815 Cond. No. 89.5