AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.094 | 0.763 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.35 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000104 |
Time: | 04:04:07 | Log-Likelihood: | -100.66 |
No. Observations: | 23 | AIC: | 209.3 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 32.3152 | 145.422 | 0.222 | 0.827 | -272.057 336.687 |
C(dose)[T.1] | 268.1192 | 280.541 | 0.956 | 0.351 | -319.060 855.298 |
expression | 3.2028 | 21.255 | 0.151 | 0.882 | -41.285 47.691 |
expression:C(dose)[T.1] | -30.2358 | 39.768 | -0.760 | 0.456 | -113.471 52.999 |
Omnibus: | 1.125 | Durbin-Watson: | 1.844 |
Prob(Omnibus): | 0.570 | Jarque-Bera (JB): | 0.863 |
Skew: | 0.151 | Prob(JB): | 0.650 |
Kurtosis: | 2.100 | Cond. No. | 540. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.63 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.70e-05 |
Time: | 04:04:07 | Log-Likelihood: | -101.01 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 91.3596 | 121.647 | 0.751 | 0.461 | -162.391 345.110 |
C(dose)[T.1] | 54.9662 | 10.244 | 5.366 | 0.000 | 33.598 76.335 |
expression | -5.4350 | 17.774 | -0.306 | 0.763 | -42.511 31.641 |
Omnibus: | 0.873 | Durbin-Watson: | 1.909 |
Prob(Omnibus): | 0.646 | Jarque-Bera (JB): | 0.735 |
Skew: | 0.049 | Prob(JB): | 0.692 |
Kurtosis: | 2.130 | Cond. No. | 199. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:04:07 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.148 |
Model: | OLS | Adj. R-squared: | 0.107 |
Method: | Least Squares | F-statistic: | 3.643 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0701 |
Time: | 04:04:07 | Log-Likelihood: | -111.27 |
No. Observations: | 23 | AIC: | 226.5 |
Df Residuals: | 21 | BIC: | 228.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -228.5174 | 161.631 | -1.414 | 0.172 | -564.647 107.612 |
expression | 44.1665 | 23.140 | 1.909 | 0.070 | -3.956 92.289 |
Omnibus: | 0.483 | Durbin-Watson: | 2.213 |
Prob(Omnibus): | 0.786 | Jarque-Bera (JB): | 0.591 |
Skew: | 0.264 | Prob(JB): | 0.744 |
Kurtosis: | 2.419 | Cond. No. | 173. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
13.591 | 0.003 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.752 |
Model: | OLS | Adj. R-squared: | 0.684 |
Method: | Least Squares | F-statistic: | 11.10 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00118 |
Time: | 04:04:07 | Log-Likelihood: | -64.854 |
No. Observations: | 15 | AIC: | 137.7 |
Df Residuals: | 11 | BIC: | 140.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -190.2764 | 150.880 | -1.261 | 0.233 | -522.361 141.809 |
C(dose)[T.1] | -89.8401 | 194.498 | -0.462 | 0.653 | -517.927 338.247 |
expression | 29.4690 | 17.229 | 1.710 | 0.115 | -8.451 67.389 |
expression:C(dose)[T.1] | 14.7081 | 21.975 | 0.669 | 0.517 | -33.659 63.075 |
Omnibus: | 7.182 | Durbin-Watson: | 0.793 |
Prob(Omnibus): | 0.028 | Jarque-Bera (JB): | 4.026 |
Skew: | -1.184 | Prob(JB): | 0.134 |
Kurtosis: | 3.913 | Cond. No. | 445. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.742 |
Model: | OLS | Adj. R-squared: | 0.698 |
Method: | Least Squares | F-statistic: | 17.21 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000298 |
Time: | 04:04:07 | Log-Likelihood: | -65.153 |
No. Observations: | 15 | AIC: | 136.3 |
Df Residuals: | 12 | BIC: | 138.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -269.3366 | 91.687 | -2.938 | 0.012 | -469.105 -69.568 |
C(dose)[T.1] | 40.1174 | 11.056 | 3.629 | 0.003 | 16.029 64.206 |
expression | 38.5097 | 10.446 | 3.687 | 0.003 | 15.750 61.269 |
Omnibus: | 2.736 | Durbin-Watson: | 0.868 |
Prob(Omnibus): | 0.255 | Jarque-Bera (JB): | 1.430 |
Skew: | -0.756 | Prob(JB): | 0.489 |
Kurtosis: | 3.047 | Cond. No. | 154. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:04:07 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.458 |
Model: | OLS | Adj. R-squared: | 0.416 |
Method: | Least Squares | F-statistic: | 10.98 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00560 |
Time: | 04:04:07 | Log-Likelihood: | -70.708 |
No. Observations: | 15 | AIC: | 145.4 |
Df Residuals: | 13 | BIC: | 146.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -322.8369 | 125.910 | -2.564 | 0.024 | -594.849 -50.825 |
expression | 46.9528 | 14.169 | 3.314 | 0.006 | 16.343 77.563 |
Omnibus: | 4.252 | Durbin-Watson: | 1.946 |
Prob(Omnibus): | 0.119 | Jarque-Bera (JB): | 1.379 |
Skew: | -0.201 | Prob(JB): | 0.502 |
Kurtosis: | 1.570 | Cond. No. | 151. |