AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.050 | 0.318 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 12.71 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.66e-05 |
Time: | 05:15:17 | Log-Likelihood: | -100.44 |
No. Observations: | 23 | AIC: | 208.9 |
Df Residuals: | 19 | BIC: | 213.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -18.8753 | 102.080 | -0.185 | 0.855 | -232.530 194.780 |
C(dose)[T.1] | 10.3239 | 188.490 | 0.055 | 0.957 | -384.190 404.838 |
expression | 9.2799 | 12.939 | 0.717 | 0.482 | -17.801 36.361 |
expression:C(dose)[T.1] | 5.4537 | 23.899 | 0.228 | 0.822 | -44.567 55.474 |
Omnibus: | 2.504 | Durbin-Watson: | 1.952 |
Prob(Omnibus): | 0.286 | Jarque-Bera (JB): | 1.196 |
Skew: | -0.081 | Prob(JB): | 0.550 |
Kurtosis: | 1.895 | Cond. No. | 411. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 19.99 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.70e-05 |
Time: | 05:15:17 | Log-Likelihood: | -100.47 |
No. Observations: | 23 | AIC: | 206.9 |
Df Residuals: | 20 | BIC: | 210.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -31.4647 | 83.827 | -0.375 | 0.711 | -206.326 143.396 |
C(dose)[T.1] | 53.2908 | 8.548 | 6.234 | 0.000 | 35.459 71.123 |
expression | 10.8784 | 10.618 | 1.025 | 0.318 | -11.269 33.026 |
Omnibus: | 2.143 | Durbin-Watson: | 1.934 |
Prob(Omnibus): | 0.343 | Jarque-Bera (JB): | 1.122 |
Skew: | -0.098 | Prob(JB): | 0.571 |
Kurtosis: | 1.936 | Cond. No. | 158. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:15:17 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.019 |
Model: | OLS | Adj. R-squared: | -0.028 |
Method: | Least Squares | F-statistic: | 0.3990 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.534 |
Time: | 05:15:17 | Log-Likelihood: | -112.89 |
No. Observations: | 23 | AIC: | 229.8 |
Df Residuals: | 21 | BIC: | 232.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -8.7362 | 140.211 | -0.062 | 0.951 | -300.321 282.849 |
expression | 11.2286 | 17.776 | 0.632 | 0.534 | -25.738 48.195 |
Omnibus: | 2.915 | Durbin-Watson: | 2.539 |
Prob(Omnibus): | 0.233 | Jarque-Bera (JB): | 1.448 |
Skew: | 0.261 | Prob(JB): | 0.485 |
Kurtosis: | 1.888 | Cond. No. | 157. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.008 | 0.929 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.463 |
Model: | OLS | Adj. R-squared: | 0.316 |
Method: | Least Squares | F-statistic: | 3.155 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0684 |
Time: | 05:15:17 | Log-Likelihood: | -70.644 |
No. Observations: | 15 | AIC: | 149.3 |
Df Residuals: | 11 | BIC: | 152.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 126.0486 | 189.892 | 0.664 | 0.520 | -291.901 543.998 |
C(dose)[T.1] | -89.3161 | 265.667 | -0.336 | 0.743 | -674.045 495.413 |
expression | -7.1423 | 23.092 | -0.309 | 0.763 | -57.966 43.682 |
expression:C(dose)[T.1] | 17.0135 | 32.532 | 0.523 | 0.611 | -54.589 88.616 |
Omnibus: | 4.101 | Durbin-Watson: | 0.959 |
Prob(Omnibus): | 0.129 | Jarque-Bera (JB): | 2.417 |
Skew: | -0.983 | Prob(JB): | 0.299 |
Kurtosis: | 3.067 | Cond. No. | 362. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.892 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 05:15:17 | Log-Likelihood: | -70.828 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 55.6950 | 129.902 | 0.429 | 0.676 | -227.338 338.728 |
C(dose)[T.1] | 49.3593 | 15.836 | 3.117 | 0.009 | 14.855 83.864 |
expression | 1.4296 | 15.765 | 0.091 | 0.929 | -32.920 35.780 |
Omnibus: | 2.762 | Durbin-Watson: | 0.791 |
Prob(Omnibus): | 0.251 | Jarque-Bera (JB): | 1.878 |
Skew: | -0.849 | Prob(JB): | 0.391 |
Kurtosis: | 2.648 | Cond. No. | 137. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:15:17 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.003 |
Model: | OLS | Adj. R-squared: | -0.073 |
Method: | Least Squares | F-statistic: | 0.04185 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.841 |
Time: | 05:15:17 | Log-Likelihood: | -75.276 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 127.4073 | 165.234 | 0.771 | 0.454 | -229.560 484.374 |
expression | -4.1416 | 20.244 | -0.205 | 0.841 | -47.877 39.593 |
Omnibus: | 0.557 | Durbin-Watson: | 1.626 |
Prob(Omnibus): | 0.757 | Jarque-Bera (JB): | 0.566 |
Skew: | 0.071 | Prob(JB): | 0.753 |
Kurtosis: | 2.059 | Cond. No. | 135. |