AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.496 0.489 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.43
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.95e-05
Time: 05:19:35 Log-Likelihood: -100.62
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 180.4041 145.757 1.238 0.231 -124.670 485.478
C(dose)[T.1] -64.0115 228.901 -0.280 0.783 -543.107 415.084
expression -15.6755 18.090 -0.867 0.397 -53.537 22.186
expression:C(dose)[T.1] 14.6127 27.861 0.524 0.606 -43.701 72.926
Omnibus: 0.579 Durbin-Watson: 1.625
Prob(Omnibus): 0.749 Jarque-Bera (JB): 0.628
Skew: -0.112 Prob(JB): 0.731
Kurtosis: 2.222 Cond. No. 541.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.20
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.22e-05
Time: 05:19:35 Log-Likelihood: -100.78
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 130.8114 108.898 1.201 0.244 -96.345 357.968
C(dose)[T.1] 55.9389 9.417 5.940 0.000 36.295 75.583
expression -9.5153 13.506 -0.705 0.489 -37.689 18.658
Omnibus: 0.659 Durbin-Watson: 1.635
Prob(Omnibus): 0.719 Jarque-Bera (JB): 0.647
Skew: 0.004 Prob(JB): 0.724
Kurtosis: 2.179 Cond. No. 210.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:19:35 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.053
Model: OLS Adj. R-squared: 0.008
Method: Least Squares F-statistic: 1.185
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.289
Time: 05:19:35 Log-Likelihood: -112.47
No. Observations: 23 AIC: 228.9
Df Residuals: 21 BIC: 231.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -99.8291 165.074 -0.605 0.552 -443.120 243.462
expression 21.9460 20.159 1.089 0.289 -19.977 63.869
Omnibus: 3.442 Durbin-Watson: 2.564
Prob(Omnibus): 0.179 Jarque-Bera (JB): 1.466
Skew: 0.193 Prob(JB): 0.480
Kurtosis: 1.825 Cond. No. 195.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.657 0.222 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.538
Model: OLS Adj. R-squared: 0.413
Method: Least Squares F-statistic: 4.277
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0313
Time: 05:19:35 Log-Likelihood: -69.502
No. Observations: 15 AIC: 147.0
Df Residuals: 11 BIC: 149.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 332.5976 184.117 1.806 0.098 -72.640 737.836
C(dose)[T.1] -165.0412 284.712 -0.580 0.574 -791.688 461.606
expression -31.5278 21.852 -1.443 0.177 -79.624 16.568
expression:C(dose)[T.1] 25.3043 34.353 0.737 0.477 -50.306 100.914
Omnibus: 3.488 Durbin-Watson: 1.241
Prob(Omnibus): 0.175 Jarque-Bera (JB): 1.851
Skew: -0.857 Prob(JB): 0.396
Kurtosis: 3.157 Cond. No. 407.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.516
Model: OLS Adj. R-squared: 0.435
Method: Least Squares F-statistic: 6.388
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0129
Time: 05:19:35 Log-Likelihood: -69.863
No. Observations: 15 AIC: 145.7
Df Residuals: 12 BIC: 147.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 246.4829 139.500 1.767 0.103 -57.461 550.427
C(dose)[T.1] 44.3657 15.223 2.914 0.013 11.197 77.535
expression -21.2890 16.537 -1.287 0.222 -57.319 14.741
Omnibus: 4.200 Durbin-Watson: 1.191
Prob(Omnibus): 0.122 Jarque-Bera (JB): 2.088
Skew: -0.888 Prob(JB): 0.352
Kurtosis: 3.430 Cond. No. 160.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:19:35 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.173
Model: OLS Adj. R-squared: 0.109
Method: Least Squares F-statistic: 2.717
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.123
Time: 05:19:35 Log-Likelihood: -73.877
No. Observations: 15 AIC: 151.8
Df Residuals: 13 BIC: 153.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 368.6141 167.059 2.206 0.046 7.706 729.522
expression -33.1677 20.122 -1.648 0.123 -76.638 10.303
Omnibus: 1.486 Durbin-Watson: 2.112
Prob(Omnibus): 0.476 Jarque-Bera (JB): 1.036
Skew: 0.377 Prob(JB): 0.596
Kurtosis: 1.956 Cond. No. 152.