AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.075 0.787 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.718
Model: OLS Adj. R-squared: 0.673
Method: Least Squares F-statistic: 16.09
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.89e-05
Time: 05:15:03 Log-Likelihood: -98.565
No. Observations: 23 AIC: 205.1
Df Residuals: 19 BIC: 209.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -27.7853 73.820 -0.376 0.711 -182.293 126.722
C(dose)[T.1] 291.2409 112.695 2.584 0.018 55.367 527.115
expression 12.7831 11.476 1.114 0.279 -11.236 36.802
expression:C(dose)[T.1] -38.5924 18.151 -2.126 0.047 -76.583 -0.602
Omnibus: 0.656 Durbin-Watson: 1.491
Prob(Omnibus): 0.720 Jarque-Bera (JB): 0.710
Skew: 0.323 Prob(JB): 0.701
Kurtosis: 2.432 Cond. No. 222.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.60
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.73e-05
Time: 05:15:03 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.1641 62.142 1.145 0.266 -58.461 200.789
C(dose)[T.1] 52.3502 9.465 5.531 0.000 32.607 72.093
expression -2.6435 9.642 -0.274 0.787 -22.756 17.469
Omnibus: 0.559 Durbin-Watson: 1.943
Prob(Omnibus): 0.756 Jarque-Bera (JB): 0.618
Skew: 0.111 Prob(JB): 0.734
Kurtosis: 2.228 Cond. No. 91.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:15:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.116
Model: OLS Adj. R-squared: 0.073
Method: Least Squares F-statistic: 2.744
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.112
Time: 05:15:03 Log-Likelihood: -111.69
No. Observations: 23 AIC: 227.4
Df Residuals: 21 BIC: 229.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 222.6866 86.575 2.572 0.018 42.644 402.729
expression -22.9277 13.841 -1.656 0.112 -51.712 5.856
Omnibus: 0.745 Durbin-Watson: 2.774
Prob(Omnibus): 0.689 Jarque-Bera (JB): 0.689
Skew: -0.068 Prob(JB): 0.709
Kurtosis: 2.163 Cond. No. 81.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.533 0.480 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.529
Model: OLS Adj. R-squared: 0.401
Method: Least Squares F-statistic: 4.124
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0347
Time: 05:15:03 Log-Likelihood: -69.648
No. Observations: 15 AIC: 147.3
Df Residuals: 11 BIC: 150.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 64.1115 99.513 0.644 0.533 -154.915 283.138
C(dose)[T.1] 265.3965 184.660 1.437 0.178 -141.038 671.831
expression 0.5605 16.709 0.034 0.974 -36.217 37.338
expression:C(dose)[T.1] -34.4954 29.855 -1.155 0.272 -100.206 31.215
Omnibus: 0.527 Durbin-Watson: 1.226
Prob(Omnibus): 0.768 Jarque-Bera (JB): 0.537
Skew: -0.358 Prob(JB): 0.765
Kurtosis: 2.410 Cond. No. 189.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.472
Model: OLS Adj. R-squared: 0.384
Method: Least Squares F-statistic: 5.368
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0216
Time: 05:15:03 Log-Likelihood: -70.507
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 128.0638 83.847 1.527 0.153 -54.622 310.750
C(dose)[T.1] 52.8324 16.187 3.264 0.007 17.563 88.102
expression -10.2452 14.039 -0.730 0.480 -40.834 20.343
Omnibus: 1.800 Durbin-Watson: 0.757
Prob(Omnibus): 0.407 Jarque-Bera (JB): 1.332
Skew: -0.682 Prob(JB): 0.514
Kurtosis: 2.479 Cond. No. 69.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:15:03 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.073
Method: Least Squares F-statistic: 0.04788
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.830
Time: 05:15:03 Log-Likelihood: -75.272
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 70.1026 108.169 0.648 0.528 -163.583 303.788
expression 3.8581 17.632 0.219 0.830 -34.234 41.951
Omnibus: 0.626 Durbin-Watson: 1.554
Prob(Omnibus): 0.731 Jarque-Bera (JB): 0.589
Skew: 0.042 Prob(JB): 0.745
Kurtosis: 2.033 Cond. No. 67.1