AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.019 0.325 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.11
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.14e-05
Time: 04:34:51 Log-Likelihood: -100.20
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.6086 63.266 1.195 0.247 -56.808 208.025
C(dose)[T.1] 124.8131 101.977 1.224 0.236 -88.628 338.254
expression -3.7384 11.002 -0.340 0.738 -26.766 19.289
expression:C(dose)[T.1] -12.1294 17.510 -0.693 0.497 -48.779 24.521
Omnibus: 2.348 Durbin-Watson: 1.753
Prob(Omnibus): 0.309 Jarque-Bera (JB): 1.340
Skew: 0.277 Prob(JB): 0.512
Kurtosis: 1.956 Cond. No. 174.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.666
Model: OLS Adj. R-squared: 0.633
Method: Least Squares F-statistic: 19.95
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.72e-05
Time: 04:34:51 Log-Likelihood: -100.49
No. Observations: 23 AIC: 207.0
Df Residuals: 20 BIC: 210.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 103.0196 48.716 2.115 0.047 1.400 204.640
C(dose)[T.1] 54.4342 8.623 6.312 0.000 36.446 72.422
expression -8.5267 8.447 -1.009 0.325 -26.147 9.094
Omnibus: 1.549 Durbin-Watson: 1.545
Prob(Omnibus): 0.461 Jarque-Bera (JB): 0.996
Skew: 0.149 Prob(JB): 0.608
Kurtosis: 2.025 Cond. No. 68.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:34:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.01631
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.900
Time: 04:34:51 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 90.1703 82.168 1.097 0.285 -80.707 261.047
expression -1.8066 14.146 -0.128 0.900 -31.225 27.612
Omnibus: 3.193 Durbin-Watson: 2.482
Prob(Omnibus): 0.203 Jarque-Bera (JB): 1.542
Skew: 0.286 Prob(JB): 0.462
Kurtosis: 1.868 Cond. No. 68.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
7.692 0.017 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.584
Method: Least Squares F-statistic: 7.549
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00512
Time: 04:34:51 Log-Likelihood: -66.915
No. Observations: 15 AIC: 141.8
Df Residuals: 11 BIC: 144.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -94.0746 138.382 -0.680 0.511 -398.652 210.503
C(dose)[T.1] -39.8644 171.423 -0.233 0.820 -417.163 337.434
expression 25.5110 21.810 1.170 0.267 -22.492 73.514
expression:C(dose)[T.1] 14.9601 27.217 0.550 0.594 -44.944 74.864
Omnibus: 0.138 Durbin-Watson: 0.936
Prob(Omnibus): 0.933 Jarque-Bera (JB): 0.341
Skew: -0.131 Prob(JB): 0.843
Kurtosis: 2.309 Cond. No. 247.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 11.86
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00144
Time: 04:34:51 Log-Likelihood: -67.118
No. Observations: 15 AIC: 140.2
Df Residuals: 12 BIC: 142.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -154.8901 80.660 -1.920 0.079 -330.634 20.854
C(dose)[T.1] 54.0966 12.413 4.358 0.001 27.050 81.143
expression 35.1174 12.662 2.773 0.017 7.529 62.706
Omnibus: 0.564 Durbin-Watson: 0.929
Prob(Omnibus): 0.754 Jarque-Bera (JB): 0.575
Skew: -0.111 Prob(JB): 0.750
Kurtosis: 2.066 Cond. No. 85.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:34:51 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.132
Model: OLS Adj. R-squared: 0.066
Method: Least Squares F-statistic: 1.985
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.182
Time: 04:34:51 Log-Likelihood: -74.234
No. Observations: 15 AIC: 152.5
Df Residuals: 13 BIC: 153.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -76.9010 121.437 -0.633 0.538 -339.251 185.449
expression 27.2633 19.351 1.409 0.182 -14.543 69.069
Omnibus: 1.187 Durbin-Watson: 2.106
Prob(Omnibus): 0.552 Jarque-Bera (JB): 0.778
Skew: 0.119 Prob(JB): 0.678
Kurtosis: 1.910 Cond. No. 82.6