AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.000 | 0.987 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.72 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000143 |
Time: | 04:41:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 66.3009 | 242.083 | 0.274 | 0.787 | -440.385 572.987 |
C(dose)[T.1] | 38.8483 | 290.897 | 0.134 | 0.895 | -570.007 647.703 |
expression | -1.4973 | 29.964 | -0.050 | 0.961 | -64.212 61.218 |
expression:C(dose)[T.1] | 1.8049 | 36.413 | 0.050 | 0.961 | -74.409 78.019 |
Omnibus: | 0.332 | Durbin-Watson: | 1.875 |
Prob(Omnibus): | 0.847 | Jarque-Bera (JB): | 0.491 |
Skew: | 0.050 | Prob(JB): | 0.782 |
Kurtosis: | 2.292 | Cond. No. | 732. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.49 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 04:41:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 56.4304 | 134.175 | 0.421 | 0.679 | -223.454 336.314 |
C(dose)[T.1] | 53.2581 | 9.982 | 5.336 | 0.000 | 32.437 74.079 |
expression | -0.2751 | 16.596 | -0.017 | 0.987 | -34.894 34.343 |
Omnibus: | 0.313 | Durbin-Watson: | 1.887 |
Prob(Omnibus): | 0.855 | Jarque-Bera (JB): | 0.480 |
Skew: | 0.058 | Prob(JB): | 0.787 |
Kurtosis: | 2.302 | Cond. No. | 248. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:41:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.150 |
Model: | OLS | Adj. R-squared: | 0.109 |
Method: | Least Squares | F-statistic: | 3.692 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0684 |
Time: | 04:41:33 | Log-Likelihood: | -111.24 |
No. Observations: | 23 | AIC: | 226.5 |
Df Residuals: | 21 | BIC: | 228.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 417.6362 | 175.995 | 2.373 | 0.027 | 51.636 783.637 |
expression | -42.5636 | 22.152 | -1.921 | 0.068 | -88.631 3.504 |
Omnibus: | 0.717 | Durbin-Watson: | 2.179 |
Prob(Omnibus): | 0.699 | Jarque-Bera (JB): | 0.661 |
Skew: | 0.363 | Prob(JB): | 0.719 |
Kurtosis: | 2.597 | Cond. No. | 213. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.467 | 0.249 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.566 |
Model: | OLS | Adj. R-squared: | 0.447 |
Method: | Least Squares | F-statistic: | 4.777 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0228 |
Time: | 04:41:33 | Log-Likelihood: | -69.044 |
No. Observations: | 15 | AIC: | 146.1 |
Df Residuals: | 11 | BIC: | 148.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 374.6390 | 500.671 | 0.748 | 0.470 | -727.330 1476.608 |
C(dose)[T.1] | -592.1830 | 542.160 | -1.092 | 0.298 | -1785.470 601.104 |
expression | -37.8026 | 61.594 | -0.614 | 0.552 | -173.370 97.765 |
expression:C(dose)[T.1] | 80.5843 | 67.092 | 1.201 | 0.255 | -67.085 228.253 |
Omnibus: | 0.401 | Durbin-Watson: | 1.593 |
Prob(Omnibus): | 0.819 | Jarque-Bera (JB): | 0.091 |
Skew: | 0.176 | Prob(JB): | 0.955 |
Kurtosis: | 2.853 | Cond. No. | 926. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.509 |
Model: | OLS | Adj. R-squared: | 0.427 |
Method: | Least Squares | F-statistic: | 6.215 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0140 |
Time: | 04:41:33 | Log-Likelihood: | -69.968 |
No. Observations: | 15 | AIC: | 145.9 |
Df Residuals: | 12 | BIC: | 148.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -177.3119 | 202.368 | -0.876 | 0.398 | -618.234 263.610 |
C(dose)[T.1] | 58.7033 | 16.804 | 3.493 | 0.004 | 22.091 95.316 |
expression | 30.1156 | 24.866 | 1.211 | 0.249 | -24.062 84.293 |
Omnibus: | 0.278 | Durbin-Watson: | 1.050 |
Prob(Omnibus): | 0.870 | Jarque-Bera (JB): | 0.413 |
Skew: | -0.241 | Prob(JB): | 0.814 |
Kurtosis: | 2.346 | Cond. No. | 221. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:41:33 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.009 |
Model: | OLS | Adj. R-squared: | -0.067 |
Method: | Least Squares | F-statistic: | 0.1216 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.733 |
Time: | 04:41:33 | Log-Likelihood: | -75.230 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 176.9349 | 238.963 | 0.740 | 0.472 | -339.314 693.184 |
expression | -10.4630 | 30.000 | -0.349 | 0.733 | -75.274 54.348 |
Omnibus: | 0.944 | Durbin-Watson: | 1.528 |
Prob(Omnibus): | 0.624 | Jarque-Bera (JB): | 0.691 |
Skew: | 0.023 | Prob(JB): | 0.708 |
Kurtosis: | 1.949 | Cond. No. | 191. |