AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.756 | 0.395 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.672 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 12.99 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.56e-05 |
Time: | 05:04:35 | Log-Likelihood: | -100.27 |
No. Observations: | 23 | AIC: | 208.5 |
Df Residuals: | 19 | BIC: | 213.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 68.6688 | 272.407 | 0.252 | 0.804 | -501.486 638.824 |
C(dose)[T.1] | -223.3911 | 354.119 | -0.631 | 0.536 | -964.571 517.789 |
expression | -1.5453 | 29.103 | -0.053 | 0.958 | -62.458 59.368 |
expression:C(dose)[T.1] | 29.3596 | 37.714 | 0.778 | 0.446 | -49.576 108.296 |
Omnibus: | 1.713 | Durbin-Watson: | 2.057 |
Prob(Omnibus): | 0.425 | Jarque-Bera (JB): | 1.099 |
Skew: | 0.216 | Prob(JB): | 0.577 |
Kurtosis: | 2.021 | Cond. No. | 1.05e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 19.57 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.96e-05 |
Time: | 05:04:35 | Log-Likelihood: | -100.64 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -94.9366 | 171.602 | -0.553 | 0.586 | -452.892 263.018 |
C(dose)[T.1] | 52.1995 | 8.707 | 5.995 | 0.000 | 34.036 70.363 |
expression | 15.9379 | 18.327 | 0.870 | 0.395 | -22.291 54.167 |
Omnibus: | 3.263 | Durbin-Watson: | 2.047 |
Prob(Omnibus): | 0.196 | Jarque-Bera (JB): | 1.368 |
Skew: | 0.118 | Prob(JB): | 0.505 |
Kurtosis: | 1.829 | Cond. No. | 380. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:04:35 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.054 |
Model: | OLS | Adj. R-squared: | 0.009 |
Method: | Least Squares | F-statistic: | 1.204 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.285 |
Time: | 05:04:35 | Log-Likelihood: | -112.46 |
No. Observations: | 23 | AIC: | 228.9 |
Df Residuals: | 21 | BIC: | 231.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -224.9841 | 277.823 | -0.810 | 0.427 | -802.748 352.780 |
expression | 32.4427 | 29.571 | 1.097 | 0.285 | -29.054 93.940 |
Omnibus: | 2.563 | Durbin-Watson: | 2.636 |
Prob(Omnibus): | 0.278 | Jarque-Bera (JB): | 1.307 |
Skew: | 0.210 | Prob(JB): | 0.520 |
Kurtosis: | 1.910 | Cond. No. | 376. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.184 | 0.676 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.555 |
Model: | OLS | Adj. R-squared: | 0.433 |
Method: | Least Squares | F-statistic: | 4.566 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0260 |
Time: | 05:04:35 | Log-Likelihood: | -69.234 |
No. Observations: | 15 | AIC: | 146.5 |
Df Residuals: | 11 | BIC: | 149.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -9.1911 | 178.275 | -0.052 | 0.960 | -401.571 383.189 |
C(dose)[T.1] | 575.6327 | 339.378 | 1.696 | 0.118 | -171.334 1322.599 |
expression | 8.5793 | 19.925 | 0.431 | 0.675 | -35.276 52.435 |
expression:C(dose)[T.1] | -58.8262 | 37.899 | -1.552 | 0.149 | -142.242 24.590 |
Omnibus: | 2.000 | Durbin-Watson: | 0.945 |
Prob(Omnibus): | 0.368 | Jarque-Bera (JB): | 1.511 |
Skew: | -0.630 | Prob(JB): | 0.470 |
Kurtosis: | 2.088 | Cond. No. | 507. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.457 |
Model: | OLS | Adj. R-squared: | 0.367 |
Method: | Least Squares | F-statistic: | 5.051 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0256 |
Time: | 05:04:35 | Log-Likelihood: | -70.719 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 136.0218 | 160.418 | 0.848 | 0.413 | -213.499 485.542 |
C(dose)[T.1] | 49.3607 | 15.625 | 3.159 | 0.008 | 15.316 83.405 |
expression | -7.6806 | 17.917 | -0.429 | 0.676 | -46.718 31.357 |
Omnibus: | 1.768 | Durbin-Watson: | 0.849 |
Prob(Omnibus): | 0.413 | Jarque-Bera (JB): | 1.390 |
Skew: | -0.664 | Prob(JB): | 0.499 |
Kurtosis: | 2.321 | Cond. No. | 187. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:04:35 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.006 |
Model: | OLS | Adj. R-squared: | -0.071 |
Method: | Least Squares | F-statistic: | 0.07299 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.791 |
Time: | 05:04:35 | Log-Likelihood: | -75.258 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 149.9328 | 208.510 | 0.719 | 0.485 | -300.526 600.391 |
expression | -6.2922 | 23.290 | -0.270 | 0.791 | -56.607 44.023 |
Omnibus: | 0.776 | Durbin-Watson: | 1.634 |
Prob(Omnibus): | 0.678 | Jarque-Bera (JB): | 0.640 |
Skew: | 0.035 | Prob(JB): | 0.726 |
Kurtosis: | 1.991 | Cond. No. | 187. |