AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.439 | 0.078 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.718 |
Model: | OLS | Adj. R-squared: | 0.673 |
Method: | Least Squares | F-statistic: | 16.10 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.89e-05 |
Time: | 03:32:18 | Log-Likelihood: | -98.560 |
No. Observations: | 23 | AIC: | 205.1 |
Df Residuals: | 19 | BIC: | 209.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -326.3147 | 185.066 | -1.763 | 0.094 | -713.662 61.033 |
C(dose)[T.1] | 317.4966 | 263.145 | 1.207 | 0.242 | -233.273 868.266 |
expression | 46.1189 | 22.420 | 2.057 | 0.054 | -0.806 93.044 |
expression:C(dose)[T.1] | -33.0225 | 30.749 | -1.074 | 0.296 | -97.381 31.336 |
Omnibus: | 0.597 | Durbin-Watson: | 1.623 |
Prob(Omnibus): | 0.742 | Jarque-Bera (JB): | 0.420 |
Skew: | -0.310 | Prob(JB): | 0.810 |
Kurtosis: | 2.770 | Cond. No. | 745. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.701 |
Model: | OLS | Adj. R-squared: | 0.671 |
Method: | Least Squares | F-statistic: | 23.39 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.80e-06 |
Time: | 03:32:18 | Log-Likelihood: | -99.238 |
No. Observations: | 23 | AIC: | 204.5 |
Df Residuals: | 20 | BIC: | 207.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -181.4688 | 127.207 | -1.427 | 0.169 | -446.819 83.881 |
C(dose)[T.1] | 35.2209 | 12.691 | 2.775 | 0.012 | 8.748 61.693 |
expression | 28.5638 | 15.402 | 1.854 | 0.078 | -3.565 60.693 |
Omnibus: | 0.879 | Durbin-Watson: | 1.671 |
Prob(Omnibus): | 0.644 | Jarque-Bera (JB): | 0.374 |
Skew: | -0.312 | Prob(JB): | 0.830 |
Kurtosis: | 3.012 | Cond. No. | 274. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:32:18 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.585 |
Model: | OLS | Adj. R-squared: | 0.565 |
Method: | Least Squares | F-statistic: | 29.63 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.12e-05 |
Time: | 03:32:18 | Log-Likelihood: | -102.98 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 21 | BIC: | 212.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -446.0976 | 96.710 | -4.613 | 0.000 | -647.216 -244.979 |
expression | 61.4683 | 11.292 | 5.443 | 0.000 | 37.984 84.952 |
Omnibus: | 0.025 | Durbin-Watson: | 1.910 |
Prob(Omnibus): | 0.988 | Jarque-Bera (JB): | 0.219 |
Skew: | 0.046 | Prob(JB): | 0.896 |
Kurtosis: | 2.530 | Cond. No. | 181. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.369 | 0.150 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.542 |
Model: | OLS | Adj. R-squared: | 0.417 |
Method: | Least Squares | F-statistic: | 4.333 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0302 |
Time: | 03:32:18 | Log-Likelihood: | -69.449 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 11 | BIC: | 149.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -156.3264 | 155.294 | -1.007 | 0.336 | -498.126 185.473 |
C(dose)[T.1] | 128.5356 | 412.177 | 0.312 | 0.761 | -778.659 1035.730 |
expression | 30.6368 | 21.210 | 1.444 | 0.176 | -16.046 77.320 |
expression:C(dose)[T.1] | -11.8446 | 54.004 | -0.219 | 0.830 | -130.707 107.018 |
Omnibus: | 4.443 | Durbin-Watson: | 1.050 |
Prob(Omnibus): | 0.108 | Jarque-Bera (JB): | 2.476 |
Skew: | -0.988 | Prob(JB): | 0.290 |
Kurtosis: | 3.242 | Cond. No. | 501. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.540 |
Model: | OLS | Adj. R-squared: | 0.463 |
Method: | Least Squares | F-statistic: | 7.034 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00952 |
Time: | 03:32:18 | Log-Likelihood: | -69.482 |
No. Observations: | 15 | AIC: | 145.0 |
Df Residuals: | 12 | BIC: | 147.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -142.9824 | 137.096 | -1.043 | 0.318 | -441.689 155.724 |
C(dose)[T.1] | 38.2083 | 16.057 | 2.379 | 0.035 | 3.222 73.195 |
expression | 28.8098 | 18.716 | 1.539 | 0.150 | -11.969 69.589 |
Omnibus: | 5.078 | Durbin-Watson: | 0.992 |
Prob(Omnibus): | 0.079 | Jarque-Bera (JB): | 2.813 |
Skew: | -1.043 | Prob(JB): | 0.245 |
Kurtosis: | 3.384 | Cond. No. | 147. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:32:18 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.322 |
Model: | OLS | Adj. R-squared: | 0.270 |
Method: | Least Squares | F-statistic: | 6.187 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0272 |
Time: | 03:32:18 | Log-Likelihood: | -72.380 |
No. Observations: | 15 | AIC: | 148.8 |
Df Residuals: | 13 | BIC: | 150.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -271.2254 | 146.932 | -1.846 | 0.088 | -588.653 46.202 |
expression | 48.6077 | 19.541 | 2.487 | 0.027 | 6.391 90.824 |
Omnibus: | 2.132 | Durbin-Watson: | 1.859 |
Prob(Omnibus): | 0.344 | Jarque-Bera (JB): | 0.978 |
Skew: | 0.066 | Prob(JB): | 0.613 |
Kurtosis: | 1.756 | Cond. No. | 134. |